
www.pervasivedatarush.com

Dataflow Programming: a

scalable data-centric

approach to parallelism

Agenda

• Background

• Dataflow Overview

– Introduction

– Design patterns

– Dataflow and actors

• DataRush Introduction

– Composition and execution models

– Benchmarks

2

Background

• Work on DataRush platform

– Dataflow based engine

– Scalable, high throughput data processing

– Focus on data preparation and deep analytics

• Pervasive Software

– Mature software company focused on

embedded data management and integration

– Located in Austin, TX

– Thousands of customers worldwide

3

H/W support for parallelism

• Instruction level

• Multicore (process, thread)

• Multicore + I/O (compute and data)

• Virtualization (concurrency)

• Multi-node (clusters)

• Massively multi-node (datacenter as a

computer)

4

Dataflow is

• Based on operators that provide a specific

function (nodes)

• Data queues (edges) connecting operators

• Composition of directed, acyclic graphs (DAG)

– Operators connected via queues

– A graph instance represents a “program” or

“application”

• Flow control

• Scheduling to prevent dead locks

• Focused on data parallelism

5

Example

6

Dataflow goodness

• Concepts are easy to grasp

• Abstracts parallelism details

• Simple to express

– Composition based

• Shared nothing, message passing

– Simplified programming model

• Immutability of flows

• Limits side effects

• Functional style

7

Dataflow and big data

• Pipelining

– Pipeline task based parallelism

– Overlap I/O and computation

– Can help optimize processor cache

– Whole application approach

• Data scalable

– Virtually unlimited data size capacity

– Supports iterative data access

• Exploits multicore

– Scalable

– High data throughput

• Extendible to multi-node

8

Parallel design patterns

• Embarrassingly parallel

• Replicable

• Pipeline

• Divide and conquer

• Recursive data

9

Dataflow and actors

• Actors in the sense of Erlang & Scala

• Commonality

– Shared nothing architecture

– Functional style of programming

– Easy to grasp

– Easy to extend

– Semantics fit well with distributed computing

– Supports either reactor or active models

10

Dataflow and actors

• Dataflow

– Flow control

– Static composition

(binding)

– Data coherency and

ordering

– Deadlock

detection/handling

– Usually strongly typed

– Great for data

parallelism

• Actors

– Immutability not

guaranteed

– Ordering not

guaranteed

– Not necessarily

optimized for large data

flows

– Great for task

parallelism

11

DataRush implementation

• DataRush implements dataflow

– Based on Kahn process networks

– Parks algorithm for deadlock detection (with

patented modifications)

– Usable by JVM-based languages (Java, Scala,

JPython, JRuby, …)

– Dataflow engine

– Extensive standard library of reusable

operators

– API’s for composition and execution

12

DataRush composition

• Application graph

– High level container (composition context)

– Add operators using add() method

– Compose using compile()

– Execute using run() or start()

• Operator

– Lives during graph composition

– Composite in nature

– Linked using flows

• Flows

– Represent data connections between operators

– Loosely typed

– Not live (no data transfer methods)

13

DataRush composition

ApplicationGraph app = GraphFactory.newApplicationGraph();

ReadDelimitedTextProperties rdprops = …

RecordFlow leftFlow = app.add(new ReadDelimitedText("UnitPriceSorted.txt",

rdprops), "readLeft").getOutput();

RecordFlow rightFlow = app.add(new ReadDelimitedText("UnitSalesSorted.txt",

rdprops), "readRight").getOutput();

String[] keyNames = { "PRODUCT_ID", "CHANNEL_NAME" };

RecordFlow joinedFlow = app.add(new JoinSortedRows(leftFlow, rightFlow,

FULL_OUTER, keyNames)).getOutput();

app.add(new WriteDelimitedText(joinedFlow, “output.txt",

WriteMode.OVERWRITE), "write");

app.run();

14

Create a new graph

Add file reader

Add file reader

Add a join operator

Add a file writer

Synchronously run the graph

Data partitioning

• Partitioners

– Round robin

– Hash

– Event

– Range

• Un-partitioners

– Round robin (ordered)

– Merge (unordered)

• Scenarios

– Scatter

– Scatter-gather combined

– Gather

– For each (pipeline)

15

ApplicationGraph g = GraphFactory.newApplicationGraph("applyFunction");

GenerateRandomProperties props = new GenerateRandomProperties(22295, 0.25);

ScalarFlow data = g.add(new GenerateRandom(TokenTypeConstant.DOUBLE, 1000000,

props).getOutput();

ScalarFlow result = partition(g, data, PartitionSchemes.rr(4), new ScalarPipeline() {

@Override

public ScalarFlow composePipeline(CompositionContext ctx, ScalarFlow flow,

PartitionInstanceInfo partInfo) {

int partID = partInfo.getPartitionID();

ScalarFlow output = ctx.add(

new ReplaceNulls(ctx, flow, 0.0D), "replaceNulls_" + partID).getOutput();

return ctx.add(

new AddValue(ctx, output, 3.141D), "addValue_" + partID).getOutput();

}

});

g.add(new LogRows(result));

g.run();

16

Create a new graph

Generate data

Partition the data using round robin

Compose partitioned pipeline

Each partitions flow will be round robin unpartitioned

Use the results

Partitioning data – resultant graph

17

DataRush execution

• Process

– Worker function

– Executes at runtime

– Active actor (backed by thread)

• Queues

– Data transfer channel

– Single writer, multiple reader

• Ports

– End points of queues

– Strongly typed

– Scalar Java types

– Record (composite) type

18

DataRush execution

• No feedback loops

• Data iteration is supported

• Sub-graphs supported (running a graph from a graph)

• Execution Steps

– Composition invoked

– Flows are realized as queues

– Ports exposed on queues to processes

– Processes are instantiated

– Threads created for processes and started

– Deadlock monitoring

– Stats exposed via JMX and Mbeans

– Cleanup

19

Process example

public class IsNullProcess extends DataflowProcess {

private final GenericInput input;

private final BooleanOutput output;

public IsNotNull(CompositionContext ctx, RecordFlow input) {

super(ctx);

this.input = newInput(input);

this.output = newBooleanOutput();

}

public ScalarFlow getOutput() {

return getFlow(output);

}

public void execute() {

while (input.stepNext()) {

output.push(input.isNull());

}

output.pushEndOfData();

}

}

20

Extends DataflowProcess

Declares ports

Instantiates ports

Accessor for output port

Execution method:

• Steps input

• Pushes to output

• Closes output

Profiling

• Run-time statistics

– Collected on graphs, queues and processes

– Exposed via JMX

– Serializable for post-execution viewing

• Extending VisualVM

– Graphical JMX Console ships with the JDK

– DataRush plug-in

– Connect to running VM

• Dynamically view stats

• Look for hotspots

• Take snapshots

– Statically view serialized snapshot

21

JVM

VisualVM

JMX

Plug-in

22

23

DataRush operator libraries

• Data preparation

– Core: sort, join, aggregate, transform, …

– Data profiling

– Fuzzy matching

– Cleansing

• Analytics

– Cluster

– Classify

– Collaborative filtering

– Feature selection

– Linear regression

– Association rules

– PMML support

24

Malstone* B-10 benchmark

DataRush

• Configuration

– Single machine using 4 Intel

7500 processors

– 32 cores total

– RAID-0 disk array

– DataRush + JVM installed

• Results

– 31.5 minutes

– Nearly 2 TB/hr throughput

Hadoop (Map-Reduce)

• Configuration

– 20 node cluster

– 4-cores per node

– Hadoop + JVM installed

– Run by third-party

• Results

– 14 hours

25

*www.opencloudconsortium.org/benchmarks

• 10 billions rows of web log data

• Nearly 1 Terabyte of data

• Aggregate site intrusion information

http://www.opencloudconsortium.org/benchmarks

Malstone-B10 Scalability

370,0

192,4

90,3

51,6

31,5

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

2 cores 4 cores 8 cores 16 cores 32 cores

T
im

e
 i
n

 M
in

u
te

s

Core Count

Run-time

3.2 hours

using 4

cores

1.5 hours

using 8

cores
Under 1

hour

using 16

cores

26

Multi-node DataRush

• Extending dataflow to multi-node

– Execute distributed graph fragments

– Fragments linked via socket-based queues

– Used distributed application graph

• Specific patterns supported

– Scatter

– Gather

– Scatter-gather combined

• Available in DataRush 5 (Dec 2010)

27

Multi-node DataRush example

• Uses gather pattern

• Reads file containing text from HDFS

• Groups by field “state” to count instances

• Groups by “state” to sum counts

28

Read

HDFS

File

Read

HDFS

File

Group

Group

Group
Write

File

Hadoop

Distributed

File

System

Hadoop

DataRush

Calculate (“Map”)

Reduce

PERVASIVE DATARUSH: UNLEASH THE POWER OF YOUR DATA

Summary

29

• Dataflow

– Software architecture based on continuous functions connected

via data flows

– Data focused

– Easy to grasp and simple to express

– Simple programming model

– Utilizes multicore, extendible to multi-node

• DataRush

– Dataflow based platform

– Extensive operator library

– Easy to extend

– Scales up well with multicore

– High throughput rates

