
  

1

RESTful SOA or
Domain-Driven Design–

A Compromise?

Vaughn Vernon
vvernon@shiftmethod.com

Copyright © 2008-2010 ShiftMETHOD. All rights reserved.



  

2

Overview

Potential pitfalls of  SOA-only thinking.

Strategic Modeling patterns: DDD's “other half” and RESTful SOA

Tactical Modeling patterns: DDD building blocks and integration

Integrating Bounded Contexts: Making models work together



  

3

Service-Oriented 
architecture

Database
Client

(app)

SERVICES



  

4

SOa Pitfalls
Service concerns and responsibilities overload
▪ Services  ▪ Transactions
▪ Security  ▪ Domain Logic
▪ Data Access ▪  Translation
▪ ▪Transformation  Representation
▪ Integration TANGLE

DISTORTION



  

5

Ask-Decision-Set

Tell-Don't-Ask



  

6

What about business?

The business focus is on its domain
Is your business domain that of  Service-Oriented Architecture?

We want to do Domain-Driven Design, not SOA-Driven Design



  

7

RESTful SOA with DDD

Database

RESTful Model

Model based on the language of  the business domain 

Services based on resources that represent Model state/behavior

Client

(app)



  

8

DDD Strategic Design

Strategic Modeling is not really the “other half” of  DDD

Strategic Modeling is the most widely applicable part of  DDD

“Say again!”

S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !S u r p r I s e !



  

9

DDD Strategic Modeling

DDD is not about Entities, Value Objects, Repositories, etc.

DDD is about modeling the business domain in its own language

Bounded 

Context

Context 

Map

Open 

Host 

Service

Published 

Language

Anti-

corruption 

Layer

Important patterns for basic DDD and integration  (BC and CM)



  

10

Bounded Context
Agile Project Mgmt

Context

Identity and Access
Mgmt Context

Collaboration
Context

The delimited applicability of  a particular model. Gives team 
members a clear and shared understanding of  what has to be 
consistent and what can develop independently.



  

11

Identity & Access Context



  

12

Collaboration Context



  

13

Agile PM Context



  

15

Context Map

All three RESTful



  

16

Open Host Service

Define a protocol that gives access to your subsystem as a set
of  services. Open the protocol so that all who need to integrate
with you can use it.

RESTful
Client

(app)

HTTP

Resources as 
services



  

17

Published Language

Use a well-documented shared language that can express the 
necessary domain information as a common medium of
communication, translating as necessary...

HTTP Content Negotiation
Accept: application/xml, application/json, ...

@Produces({"application/xml", "application/json"})

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
XML, XML Schema, Xpath, Atom, JSON

//emailAddress  Model representation
by choice... use case driven



  

18

Anticorruption Layer
RESTfulClient (app)

A
Domain Model (BC)

Domain Service

T

AcL

Create an isolating layer to provide clients with functionality in
terms of  their own domain model.

Value Object

GET

XML



  

19

DDD Tactical Design

Building block patterns typically used in a DDD project

Support  integration patterns of  Strategic Design

Layered 

Architecture

Domain 

Event

Domain 

Service

Aggregate 

(uses Entity)

Value 

Object



  

20

Layered Architecture
User Interface Layer

Application Layer

Domain Layer

Infrastructure Layer

Isolated core model

OHS RESTful Services;
(and Presentation)
Security, transactions;
Thin task coordinator

Technical capabilities;
persistence, messaging...



  

22

Aggregate

Object composition cluster with consistency boundaries

Publishes Domain Events, which indicate significant occurrences



  

23

Value Object

Describes something about an object in the domain model

Supports minimalism; concepts translated from other contexts



  

24

Domain Event History

Publish notifications to Views when updates occur in the Model

Zero, one, or more updates may occur and View cannot assume



  

25

A significant occurrence in the model; defined in past tense

Published largely by Aggregates as their states transition

Domain Events Today



  

26

Domain Service

When a significant process or transformation in the domain is not 
a natural responsibility of  an Entity or Value Object, add an oper-
ation to the model as a standalone interface declared as a Service.



  

27

DDD + RESTful



  

28

Collab AcL + RESTful



  

30

UserInRoleAdapter
public Collaborator toCollaborator(...) {

  ClientRequest request =
      this.buildRequest(aTenant, anIdentity, aRoleName);

  ClientResponse<String> response = 
      request.get(String.class);

  if (response.getStatus() == 200) {
      collaborator =
          this.getTranslator().toCollaboratorFromDocument(
              response.getEntity(),
              aCollaboratorClass);
  }
  ...

GET https://iam/tenants/{tenantId}/users/{username}/inRole/{role}



  

31

GET .../inRole/{role}
@Path("/tenants/{tenantId}/users")
public class UserResource {

  @GET
  @Path("{username}/inRole/{role}")
  @Produces({ "application/xml" })
  public Response getUserInRole(
        @PathParam("tenantId") String aTenantId,
        @PathParam("username") String aUsername,
        @PathParam("role") String aRoleName) {
  
    // use Application Layer to interact with Domain Layer...    
    Response response = ...;
    return response;
  }
}



  

32

HTTP GET User-In-Role
GET https://iam/tenants/{tenantId}/users/{username}/inRole/{role}
Accept: application/xml

HTTP/1.1 200 OK
Content-Type: application/xml
...
<userInRole>
  <tenantId>CCA701C2-6490-41B9-B4DA-DB785107C8C8</tenantId>
  <username>jdoe</username>
  <firstName>John</firstName>
  <lastName>Doe</lastName>
  <emailAddress>John.Doe@domainmethod.org</emailAddress>
  <role>Moderator</role>
</userInRole>



  

33

CollaboratorTranslator
public Collaborator toCollaboratorFromDocument(...) {

  Document doc = this.buildDocument(aUserInRoleDocument);

  XPath xpath = XpathFactory.newInstance().newXPath();

  String username = xpath.evaluate("//username", doc, ...);
  String firstName = xpath.evaluate("//firstName", doc, ...);
  String lastName = xpath.evaluate("//lastName", doc, ...);
  String emailAddr = xpath.evaluate("//emailAddress", doc, ...);

  Collaborator collaborator =
    this.newCollaborator(
      username, firstName, lastName, emailAddr, aCollabType);

  return collaborator;
}



  

34

“Simple” Event:
Zoe Doe

Gets Married

Service Quality: Eventually names must reflect I&A Context

Service Capability: I&A self  service allows Zoe to change name



  

35

Problem?

Collaborator Values are created new for each request (by choice)

Changes to users in the I&A Context are not reflected in Collab



  

36

Solution (HM not MOM)

Use shared Value Objects that are eventually consistent

Publish event-based notifications out of  each Bounded Context

<notifications tenantId="C888F4B2-71F0-48D2-B4A3-0A44BABFA2E1"
  id="55F03810-09FF-4925-B9FD-7935CC91F31D" archived="false">
  <notification type="personNameChanged"
    occurredOn="2010-08-19T16:38:06-06:00"
    id="A9D234C6-96EF-4B9A-BAC9-F720A2115B3B">
    <personNameChanged>
      <tenantId>C888F4B2-71F0-48D2-B4A3-0A44BABFA2E1</tenantId>
      <username>zoe</username>
      <firstName>Zoe</firstName>
      <lastName>Jones-Doe</lastName>
    </personNameChanged>
  </notification>
  ...
</notifications>



  

37

I&A Domain Events



  

38

I&A Event Types
GroupGroupAdded
GroupGroupRemoved
GroupUserAdded
GroupUserRemoved
PersonContactInformationChanged
PersonNameChanged
TenantActivated
TenantDeactivated
TenantProvisioned
UserEnablementChanged
UserPasswordChanged
UserRegistered

RoleGroupAssigned
RoleGroupUnassigned
RoleUserAssigned
RoleUserUnassigned



  

39

Agile PM Sychronization

Out of  band 
(max-age based)

Updates cache



  

40

Notification Logs

Series of  logs from the beginning of  time; NOT in Core Domain

Current working log and any number of  archived logs



  

41

Notification Referencing
CURRENT

Notification
Log

NOT ARCHIVED

Notification
Log

ARCHIVED

Notification
Log

ARCHIVED

OLDEST
Notification

Log
ARCHIVED

previous previous previous

next next next

Navigate through previous logs to find latest applied notification

Apply all newer notifications, navigating to current using next



  

42

Feeds

Can produce Atom-based notifications from NotificationLogs

Can produce custom notifications from NotificationLogs

application/atom+xml

<notifications
  tenantId="..."
  id="..."
  archived="false">
  ...
</notifications>

application/xml



  

43

NotificationResource (1)
@Path("/tenants/{tenantId}/notifications")
public class NotificationResource {
  @GET
  @Produces({ "application/xml" })
  public Response getCurrentNotificationLog(
          @PathParam("tenantId") String aTenantId,
          @Context UriInfo aUriInfo) {

  NotificationLog currentNotificationLog =
    this.getNotificationService()
        .getCurrentNotificationLog(new TenantId(aTenantId));

  // ...
  return tempResponse;
}

Custom, current log

RESTful notification service as a resource (OHS producing PL)



  

44

NotificationResource (2)
@Path("/tenants/{tenantId}/notifications")
public class NotificationResource {
  @GET
  @Path("{notificationId}")
  @Produces({ "application/xml" })
  public Response getNotificationLog(
          @PathParam("tenantId") String aTenantId,
          @PathParam("notificationId") String aNotificationId,
          @Context UriInfo aUriInfo) {

  NotificationLog notificationLog =
    this.getNotificationService()
        .getNotificationLog(
            new TenantId(aTenantId), aNotificationId);
  // ...
  return tempResponse;
}

Specific log, next/previous

May filter using parameter



  

45

HTTP GET Notifications
GET https://iam/tenants/{tenantId}/notifications
Accept: application/xml

HTTP/1.1 200 OK
Content-Type: application/xml
Link: <https://iam/tenants/C888.../notifications>;

      rel=self
Link: <https://iam/tenants/C888.../notifications/55F03810-...>;

      rel=previous
...
<notifications ...>
  <notification ...>
  </notification>
  ...
</notifications>



  

46

HTTP GETting It All
HTTP/1.1 200 OK
Content-Type: application/xml
Link: <https://iam/tenants/C888.../notifications/72G31419-...>;

      rel=self
Link: <https://iam/tenants/C888.../notifications/46A0C283-...>;

      rel=next
Link: <https://iam/tenants/C888.../notifications/55F03810-...>;

      rel=previous
Cache-Control: max-age=3600
...
<notifications ...>
  <notification id="A9D234C6-96EF-4B9A-BAC9-F720A2115B3B">
  </notification>
  ...
</notifications>

Track latest locally



  

47

Incoming Notification
Tracker

private IncomingNotificationTracker tracker;
//...
private void applyNotification(... aNotification) {
  // ...
  this.getTracker()
      .recordMostRecent(
          aNotification.getId(),
          aNotification.getType(),
          aNotification.getOccurredOn());
}



  

48

<notification type="personNameChanged"

    occurredOn="2010-08-19T16:38:06-06:00"
    id="A9D234C6-96EF-4B9A-BAC9-F720A2115B3B">
    <personNameChanged>
      <tenantId>C888F4B2-71F0-48D2-B4A3-0A44BABFA2E1</tenantId>
      <username>zoe</username>
      <firstName>Zoe</firstName>
      <lastName>Jones-Doe</lastName>
    </personNameChanged>
</notification>

Notification Element

Child reflects Domain Event from originating Bounded Context

Outer notification element contains common information

Descending date/time order



  

49

Agile PM Shared Values
ProductOwner

TeamMember

Anticorruption Layer (notifications adapter) updates

MemberService (Domain) caches single instance in database



  

52

Zoe's New Name
ProductOwner productOwner =
  DomainRegistry
      .getMemberService()
      .getProductOwner(tenant, "zoe");
        
assertNotNull(productOwner);

assertEquals(productOwner.getName(),
             "Zoe Jones-Doe");

assertEquals(productOwner.getEmailAddress(),
             "zoe@shiftmethod.com");



  

53

Autonomous Services

Notifications allow seeding Model from “beginning of  time”

Notifications allow recovery from any service down-time

Notifications from Domain Events of  all three Bounded Contexts



  

54

Summary

For Business: combine RESTful SOA with Domain-Driven Design

Strategic Modeling patterns: DDD's “better half” for RESTful SOA

Tactical Modeling patterns: Domain Events key building block

Integrating Bounded Contexts: RESTful + Hypermedia



  

55

Contact
Vaughn Vernon

vvernon@shiftmethod.com

Copyright © 2008-2010 ShiftMETHOD. All rights reserved.

Questions?
Please fill out evaluation forms!


