2 DOORDASH

Fabricator : A Declarativ
Feature Platform ;

Kunal Shah

Agenda

Feature Engineering at Doordash
Reimagining an ideal Feature Platform
Fabricator : Overview

Architecture deep dives

Results and Learnings

Agenda

Feature Engineering at Doordash
Reimagining an ideal Feature Platform
Fabricator : Overview

Architecture deep dives

Results and Learnings

Looking back : A year ago

100B

Unique Features Daily Feature Values Number of jobs

How did our
legacy systems
look?

° Efficient feature store

° ETL framework with a
robust warehouse

° Manual steps for
everything else

Feature Development

€0-

DS

Feature Serving

-
Feature _> Data
[

t !

Model | Offine Feature

\

Online Feature
>)

(oL)
Storage

Online Model
Serving

@

€6

DS

Pain points

Fragmentation hampers velocity Infrastructure evolution is low No control plane

Data Scientists have to interface with Improving best practices and Maintaining features requires more than

many loosely coupled systems integrations takes way too long just code

Agenda

Feature Engineering at Doordash
Reimagining an ideal Feature Platform
Fabricator : Overview

Architecture deep dives

Results and Learnings

What does an ideal platform look like?

Single entrypoint

Semantic feature representation
Simplified abstractions

High iteration velocity

Automable feature lifecycle management

Architecture
of an ideal
platform

Feature Development

Feature
Generation

Warehouse

Feature > Offline Feature
Registry Serving

Feature Management

> Online Feature
Serving

Feature Feature
Discovery (0] TT-TaVE1 111147

Storage

Online Model
Serving

Agenda

Feature Engineering at Doordash
Reimagining an ideal Feature Platform
Fabricator : Overview

Architecture deep dives

Results and Learnings

Fabricator Vision

Enable Data Scientists to declaratively define efficient end-to-end
feature pipelines and automate the operational lifecycle of features.

Three core components

Centralized Declarative Registry Unified Execution Environment Infrastructure Automation
Provide an entrypoint that allows ML Provide an execution environment with Provide an automated integration for all
practitioners to define E2E feature simple APIs for high iteration velocity. other downstream operations.

semantics in simple abstractions.

Fabricator :
Architecture

Develop

Users

Unified Execution E

Feature

Generation
Warehouse

Offline Feature
Serving

J

—_— &
Productionize

Feature o (N Online Feature
Registry v Serving

Feature

Sh7
\-‘é'/

Observability

Feature
» Discovery

Infrastructure Automation

Online
Storage

Agenda

Feature Engineering at Doordash
Reimagining an ideal Feature Platform
Fabricator : Overview

Architecture deep dives

Results and Learnings

Feature Registry

Simple YAML definitions for feature semantics
Protobuf backed schema for YAML objects

DB backed service for global access for definitions
Continuously deployed for every change

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics Lo
file: ...
resource_overrides:
trigger_spec:
An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
° Sink name: search-redis
° Feature type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics Lo
file: ...
resource_overrides:
trigger_spec:
An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
° Sink name: search-redis
° Feature type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics L
file: ...
resource overrides:
trigger_spec:
An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
o Generation name: search-redis
° Sink type: REDIS
° Feature redis_spec:
cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features
compute_spec:
F type: SNOWFLAKE_SQL
eatu re snowflake_spec:
o sqls:
Semantics =
SEEECTIEY:
S
SEEECTNEY:
An E2E pipeline requires trigger_spec:
upstreams:

only a few YAML definitions.
metadata_spec:

° Source
user: dsml-search

o Generation
° Sink sink:
° Feature name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features
type: REALTIME
compute_spec:

Feature

riviera_spec:

Sem a ntiCS kafka_sources:

- cluster: default

topic: delivery_lifecycle_events

sql: >-
o . SELECT ...
An E2E pipeline requires T Tcear spec:
only a few YAML definitions. upstreams:

L] Source metadata_spec:

o) Generation user: dsml-search

° Sink ik

° Feature name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:
- consumer_id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

Feature
Semantics

An E2E pipeline requires

only a few YAML definitions.

Source
o Generation
o Storage
Sink
Feature

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table _name: dimension_consumer_engagement_ features
compute_spec:
type: SPARK
spark_spec:
file:
resource_overrides:
trigger_spec:

upstreams:

sink:
name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics L
file: ...
resource_overrides:
trigger_spec:
An E2E pipeline requires only a upstreams:
few YAML definitions.
° Source sink:
o Generation name: search-redis
o Storage type: REDIS
o Orchestration redis_spec:
° Sink cluster_node:
° Feature
feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics Lo
file: ...
resource_overrides:
trigger_spec:
An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
° Sink name: search-redis
° Feature type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

Feature
Semantics

An E2E pipeline requires only a
few YAML definitions.

Source

Sink

Feature
o Entities
o Serving

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features
compute_spec:
type: SPARK
spark_spec:
file:
resource_overrides:
trigger_spec:

upstreams:

sink:
name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis

Benetfits of the design

Evolution is easy Support for infrastructure flexibility Global availability
PB based backend makes our definitions New storage and compute paradigms Every downstream has immediate
robust to extension can be adopted without significant shifts access to definitions

Unified Execution Environment

e Library suite that bridges registry and infrastructure
e Enables contextual executions of registry definitions
e Provides black box optimizations

FeatureContext (BaseContext) s

def __imit__(

features
entities

Contextual table_name

storage_type=

Executions env=
Pythonic wrappers around lass SparkFeatureUpload:
YAML definitions designed lef __dnit__(contexts FeatureContext)s

to “execute” the YAMLs .context context
efficiently df = None

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()

Contextual
Executions

Context objects wrap
registry objects within a
Python wrapper.

FeatureContext (BaseContext) s

_inmit__(
features
entities
table_name
storage_type=

env=

SparkFeatureUpload:
F__dnit__(contexts FeatureContext)s

.context = context
.df = N

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()

FeatureContext (BaseContext) s

_inmit__(
features
entities

Contextual table_name

storage_type=

Executions env=

Upload jobs provide an class SparkFeatureUpload:

optimized and efficient Fo__imit__(contexts FeatureContext)s

process to execute a .context = context

Context df = N

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()

Contextual
Executions

User code is a highly
condensed expression of
the registry definitions

FeatureContext (BaseContext) s

_inmit__(
features
entities
table_name
storage_type=

env=

SparkFeatureUpload:
F__dnit__(contexts FeatureContext)s

.context = context
.df = N

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()

Benetfits of the design

Most jobs are no-code High fidelity testing Efficient execution
Unless you need customizations, same Notebook clusters mimic production job Users don’t have to optimize for different
code executes multiple YAMLs setup. storage or compute choices

Infrastructure Automation

A central registry and a unified library suite enable us to provide
every downstream integration to a feature definition for free

Orchestration

e Automated DAG
construction

e Flexible choice for
orchestrator

e Date partitioning

e Scalable and
parallelized backfilling.

upstreams: ..

fabricator_consumer_engagement_metrics % Job nfesture jobs@fabricator ¢ (e Sansar:fbricator. consumer_angagement_metrics sensor €@ Latas run; Ot , 447 A\

Overview Launchpad Runs Partitions

Status

857

Total partitions

Run duration

Hide per-step status | @ Launch backiil

9 496

Failed partitions Missing partitions

A b P A
Pt e
o S S s
1111 111 1 1 11 111 11 1 111 111111 111 1111111 111z 21 11 2 111

© N e e A
AP A AR
&S s
1° 0 0 0 9
St gt
o S

Online Serving

Automate materialization of
features to our scalable
feature store

source:

name: consumer_engagement_features

storage_spec:
type: DELTA_LAKE

table_name: dimension_consumer_engagement_features

compute_spec:
type: SPARK
spark_spec:
file:
resource_overrides:
trigger_spec:

upstreams: ...

sink:
name: search-redis
type: REDIS
redis_spec:

cluster_node: ...

feature:
name: caf_consumer_clicks
entities:
- consumer_id
source: consumer engagement features
materialize_spec:
sink: search-redis

Upload
Service

Redis
Store

Feature
Discovery

Automate registry

synchronization with

Amundsen

Registry enables
metadata extractors
Company wide
integration enable
lineage tracking

name: consume r»engagement?featu res

stor
ty

dimension_consumer_engagement_features

compute_spec:

type:

SPARK

dsml-search

feature.caf_cs_st_p28d_consumer_store_clicks

Datasets « fabricator « ml

Description

Add Description

Date Range

? Non-Partitioned Table
4 Data available for all dates

Tags

+ New

Feature Sink

Owners

Add Owner

Frequent Users

No frequent users exist

Columns (2) Dashboards (0)

B model.ads_sponsored listing

@ model.carousel_ads_quality

fabricator

fabricator

mi

Feature
Observability

Automate feature
observability with
Chronosphere

~ Feature Metrics
Percentage of Predictions using Defaults
884
882
880 ——

878

1500 1530 16:00 1630 17.00 17:30 18:00 1830
== Percentage Default

Standard Deviation Metrics

1
0.900
0.800
0700
0,600
0.500

1500 1530 16:00 1630 17.00 1730 1800 1830

= Standard Deviation

Mean Metrics

0180

19:00

19:00

0170

0160

0150

0140
1500 1530 16:00 1630 1700 1730 18:00 1830

— Mean

19:00

1930

1930

1930

2000

2000

2000

20:30

2030

2030

Total Defaults
Tami
M
——
b
o
10Mi o
8Mil ‘ i,
ol
1600 1530 1600 1630 1700 1730 1800 1830 1900 1930 2000 2030
== Total Defaults
Std Percentage Change
. m (_0 .
- ; .
1W Change 2W Change 4W Change

Mean Percentage Change

-4.7

1W Change

-0.95

2W Change

-1.1

4W Change

Agenda

Feature Engineering at Doordash
Reimagining an ideal Feature Platform
Fabricator : Overview

Architecture deep dives

Results and Learnings

Results

Unique Features Daily Feature Values Number of jobs

Learnings

Build products, not systems

Adoption was slower when users
interfaced with systems, rather than a
single product

Make it easy to do the right thing

Simplify the most prolific patterns, and
leave room for customization

Reliability lags behind growth

Adoption is not without risks, and can
come at the cost of robustness.

Thank you!

