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Looking back : A year ago

100B

Unique Features Daily Feature Values Number of jobs



How did our
legacy systems
look?

° Efficient feature store

° ETL framework with a
robust warehouse

° Manual steps for
everything else
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Pain points

Fragmentation hampers velocity Infrastructure evolution is low No control plane

Data Scientists have to interface with Improving best practices and Maintaining features requires more than

many loosely coupled systems integrations takes way too long just code
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What does an ideal platform look like?

Single entrypoint

Semantic feature representation
Simplified abstractions

High iteration velocity

Automable feature lifecycle management
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Fabricator Vision

Enable Data Scientists to declaratively define efficient end-to-end
feature pipelines and automate the operational lifecycle of features.



Three core components

Centralized Declarative Registry Unified Execution Environment Infrastructure Automation
Provide an entrypoint that allows ML Provide an execution environment with Provide an automated integration for all
practitioners to define E2E feature simple APIs for high iteration velocity. other downstream operations.

semantics in simple abstractions.



Fabricator :
Architecture
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Feature Registry

Simple YAML definitions for feature semantics
Protobuf backed schema for YAML objects

DB backed service for global access for definitions
Continuously deployed for every change



source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics Lo
file: ...
resource_overrides:
trigger_spec:
An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
° Sink name: search-redis
° Feature type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis
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source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics L
file: ...
resource overrides:
trigger_spec:
An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
o Generation name: search-redis
° Sink type: REDIS
° Feature redis_spec:
cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis



source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features
compute_spec:
F type: SNOWFLAKE_SQL
eatu re snowflake_spec:
o sqls:
Semantics =
SEEECTIEY:
S
SEEECTNEY:
An E2E pipeline requires trigger_spec:
upstreams:

only a few YAML definitions.
metadata_spec:

° Source
user: dsml-search

o Generation
° Sink sink:
° Feature name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_id

source: consumer_engagement_features

materialize_spec:

sink: search-redis




source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features
type: REALTIME
compute_spec:

Feature

riviera_spec:

Sem a ntiCS kafka_sources:

- cluster: default

topic: delivery_lifecycle_events

sql: >-
o . SELECT ...
An E2E pipeline requires T Tcear spec:
only a few YAML definitions. upstreams:

L] Source metadata_spec:

o) Generation user: dsml-search

° Sink ik

° Feature name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:
- consumer_id

source: consumer_engagement_features

materialize_spec:

sink: search-redis




Feature
Semantics

An E2E pipeline requires

only a few YAML definitions.

Source
o Generation
o Storage
Sink
Feature

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table _name: dimension_consumer_engagement_ features
compute_spec:
type: SPARK
spark_spec:
file:
resource_overrides:
trigger_spec:

upstreams:

sink:
name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis



source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features

Featu re compute_spec:

type: SPARK
Semantics L
file: ...
resource_overrides:
trigger_spec:
An E2E pipeline requires only a upstreams:
few YAML definitions.
° Source sink:
o Generation name: search-redis
o Storage type: REDIS
o Orchestration redis_spec:
° Sink cluster_node:
° Feature
feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis
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An E2E pipeline requires upstreams:
only a few YAML definitions.
° Source sink:
° Sink name: search-redis
° Feature type: REDIS
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Feature
Semantics

An E2E pipeline requires only a
few YAML definitions.

Source

Sink

Feature
o Entities
o Serving

source:
name: consumer_engagement_features
storage_spec:
type: DELTA_LAKE
table_name: dimension_consumer_engagement_features
compute_spec:
type: SPARK
spark_spec:
file:
resource_overrides:
trigger_spec:

upstreams:

sink:
name: search-redis
type: REDIS
redis_spec:

cluster_node:

feature:
name: caf_consumer_clicks
entities:

- consumer_1id

source: consumer_engagement_features

materialize_spec:

sink: search-redis




Benetfits of the design

Evolution is easy Support for infrastructure flexibility Global availability
PB based backend makes our definitions New storage and compute paradigms Every downstream has immediate
robust to extension can be adopted without significant shifts access to definitions



Unified Execution Environment

e Library suite that bridges registry and infrastructure
e Enables contextual executions of registry definitions
e Provides black box optimizations



FeatureContext (BaseContext) s

def __imit__(

features
entities

Contextual table_name

storage_type=

Executions env=
Pythonic wrappers around lass SparkFeatureUpload:
YAML definitions designed lef __dnit__( contexts FeatureContext)s

to “execute” the YAMLs .context context
efficiently df = None

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()




Contextual
Executions

Context objects wrap
registry objects within a
Python wrapper.

FeatureContext (BaseContext) s

_inmit__(
features
entities
table_name
storage_type=

env=

SparkFeatureUpload:
F__dnit__( contexts FeatureContext)s

.context = context
.df = N

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()



FeatureContext (BaseContext) s

_inmit__(
features
entities

Contextual table_name

storage_type=

Executions env=

Upload jobs provide an class SparkFeatureUpload:

optimized and efficient Fo__imit__( contexts FeatureContext)s

process to execute a .context = context

Context df = N

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()



Contextual
Executions

User code is a highly
condensed expression of
the registry definitions

FeatureContext (BaseContext) s

_inmit__(
features
entities
table_name
storage_type=

env=

SparkFeatureUpload:
F__dnit__( contexts FeatureContext)s

.context = context
.df = N

context = FeatureContext.from_source(

= SparkFeatureUpload(context)

job.run()




Benetfits of the design

Most jobs are no-code High fidelity testing Efficient execution
Unless you need customizations, same Notebook clusters mimic production job Users don’t have to optimize for different
code executes multiple YAMLs setup. storage or compute choices



Infrastructure Automation

A central registry and a unified library suite enable us to provide
every downstream integration to a feature definition for free



Orchestration

e Automated DAG
construction

e Flexible choice for
orchestrator

e Date partitioning

e Scalable and
parallelized backfilling.

upstreams: ..
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Online Serving

Automate materialization of
features to our scalable
feature store

source:

name: consumer_engagement_features

storage_spec:
type: DELTA_LAKE

table_name: dimension_consumer_engagement_features

compute_spec:
type: SPARK
spark_spec:
file:
resource_overrides:
trigger_spec:

upstreams: ...

sink:
name: search-redis
type: REDIS
redis_spec:

cluster_node: ...

feature:
name: caf_consumer_clicks
entities:
- consumer_id
source: consumer engagement features
materialize_spec:
sink: search-redis

Upload
Service

Redis
Store



Feature
Discovery

Automate registry

synchronization with

Amundsen

Registry enables
metadata extractors
Company wide
integration enable
lineage tracking

name: consume r»engagement?featu res

stor
ty

dimension_consumer_engagement_features

compute_spec:

type:

SPARK

dsml-search

feature.caf_cs_st_p28d_consumer_store_clicks

Datasets « fabricator « ml

Description

Add Description

Date Range

? Non-Partitioned Table
4 Data available for all dates

Tags

+ New

Feature Sink

Owners

Add Owner

Frequent Users

No frequent users exist

Columns (2)  Dashboards (0)

B model.ads_sponsored listing

@ model.carousel_ads_quality

fabricator

fabricator

mi



Feature
Observability

Automate feature
observability with
Chronosphere
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Results

Unique Features Daily Feature Values Number of jobs



Learnings

Build products, not systems

Adoption was slower when users
interfaced with systems, rather than a
single product

Make it easy to do the right thing

Simplify the most prolific patterns, and
leave room for customization

Reliability lags behind growth

Adoption is not without risks, and can
come at the cost of robustness.



Thank you!



