
API evolution without
versioning

Brandon Byars
Head of Technology
bbyars@thoughtworks.com
@BrandonByars

1

mailto:bbyars@thoughtworks.com

Booking a cruise

2

Reservation system Payment gatewayBooking service

Hold room

Authorize credit card

Confirm reservation

Booking a cruise

3

Reservation system Payment gatewayBooking service

Hold room

Authorize credit card

Confirm reservation

Unexpected error

Booking a cruise

4

Reservation system Payment gatewayBooking service

Hold room

Authorize credit card

Confirm reservation

Unexpected error

Retry

About me

5

Experiences
● Led multiple digital platform engagements with a

focus on API strategy

Books
● Testing microservices with mountebank

Articles on martinfowler.com
● Enterprise integration using REST
● You can’t buy integration
● API evolution without versioning

Some people, when
confronted with a
problem, think “I
know, I’ll use
versioning.” Now they
have 2.1.0 problems.

6

An adaptation of Jamie Zawinski’s famous dig on
regular expressions

6

MOVE
FAST AND

BREAK
THINGS*

* (THAT OTHER PEOPLE
HAVE TO FIX)

Contract specifications as promises

7

So why the word
promise?

…
The term does not have

the arrogance or hubris of
the more frequently used

guarantee, and that is
good.

- Mark Burgess

Following the evolution of a complex API

8

Stub 2
P1 P2Predicates:

Responses: R1R2

P3 Response
Resolver Behaviors

R1
B1 B2 Imposter

Interpret response

Post-process response

mountebank (https://www.mbtest.org) is a multi-protocol service
virtualization tool controllable through a REST API

https://www.mbtest.org

9

Obviousness
1.

Evaluating options from a consumer’s perspective

All strategies will be evaluating against the following criteria. There is one criteria
missing, which is often the primary one used for decision making: implementation
complexity.

Elegance
2.

Stability
3.

© 2022 Thoughtworks

Evolution patterns

10

Change by addition

11

{

 "is": {

 "statusCode": 500,

 "body": "Error!!!"

 }

}

{

 "is": {

 "statusCode": 500,

 "body": "Error!!!"

 },
 "_behaviors": {

 "wait": 500

 }

}

Obviousness Elegance Stability

Add latency to the response

Multi-typing

12

{

 "is": {

 "statusCode": 500,

 "body": "Error!!!"

 },
 "_behaviors": {

 "wait": 500

 }

}

{

 "is": {

 "statusCode": 500,

 "body": "Error!!!"

 },
 "_behaviors": {

 "wait": "() => Math.random() * 1000"
 }

}

Obviousness Elegance Stability

Allow the latency to be determined dynamically

Upcasting

13

{

 "is": {

 "statusCode": 500,

 "body": "Error!!!"

 },
 "_behaviors": {

 "wait": 500,

 "shellTransform": "ruby ./time.rb"
 }
}

{

 "is": {

 "statusCode": 500,

 "body": "Error!!!"

 },
 "_behaviors": {

 "wait": 500,

 "shellTransform": ["ruby ./time.rb",
"python lookup.py"]
 }
}

Obviousness Elegance Stability

Allow a pipeline of shell transformations instead of just one

Isn’t that a breaking
change?
Of course it is!

14

Versioning pushes the cost of the
breaking change to the consumers.

Upcasting absorbs the cost of the
breaking change in the producer.

function upcast (request) {

 upcastShellTransformToArray(request);

}

function upcastShellTransformToArray (request) {

 (request.stubs || []).forEach(stub => {

 (stub.responses || []).forEach(response => {

 if (response._behaviors &&

response._behaviors.shellTransform &&

 typeof

response._behaviors.shellTransform === 'string') {

 response._behaviors.shellTransform =

[response._behaviors.shellTransform];

 }

 });

 });

}

compatibility.upcast(request);

Nested upcasting

15

{

 "is": { … },

 "_behaviors": {

 "wait": 500,

 "shellTransform": ["...", "..."],

 "lookup": [{ … }, { … }],

 "copy": [{ … }, { … }],

 "decorate": "...",

 "repeat": 3

 }

}

{
 "is": " { ... },
 "repeat": 3,
 "behaviors": [
 { "copy": { ... } },
 { "decorate": "..." },
 { "lookup": { … } },
 { "shellTransform": "..." },
 { "decorate": "..." },
 { "wait": 500 },
 { "shellTransform": "..." }
]
}

Obviousness Elegance Stability

Allow a pipeline of shell transformations instead of just one

Implementing nested
upcasts

16

The trick is to simply execute the
upcasts in chronological order of
change

function upcast (request) {

 upcastShellTransformToArray(request);

 upcastBehaviorsToArray(request);

}

compatibility.upcast(request);

Downcasting

17

{

 "inject": "function (request,

deprecatedLocalState, logger, callback,

imposterState) { … }"

}

{

 "inject": "function (config) { … }"

}

Obviousness Elegance Stability

Replace complicated function signature with a Parameter Object

Implementing
downcasting

18

Downcasting can be considerably
trickier to implement than upcasting,
and has less applicability.

function downcastInjectionConfig (config) {

 if (config.request.method || config.request.data) {

 Object.keys(config.request).forEach(key => {

 config[key] = config.request[key];

 });

 }

}

function inject (request, fn, logger, imposterState) {

 return new Promise((done, reject) => {

 // Leave parameters for older interface

 const injected = `(${fn})(config, injectState,

logger, done, imposterState);`,

 // ...

 compatibility.downcastInjectionConfig(config);

 // ...

 });

}

Hidden interfaces

19

{

 "is": { … },
 "_behaviors": [

 "shellTransform": "node ./time.js"
]
}

var request = JSON.parse(process.argv[2]),

 response = JSON.parse(process.argv[3]);

var request = JSON.parse(process.env.MB_REQUEST),

 response = JSON.parse(process.env.MB_RESPONSE);

time.js

Obviousness Elegance Stability

Breaking hidden interfaces

20

// Windows has a pretty low character limit to the command line. When we're in danger

// of the character limit, we'll remove the command line arguments under the assumption

// that backwards compatibility doesn't matter when it never would have worked to begin with

let fullCommand = `${command} ${quoteForShell(request)} ${quoteForShell(response)}`;

if (fullCommand.length >= maxShellCommandLength) {

 fullCommand = command;

}

In the worst case, hidden interfaces can break consumers using the published
interface.

Without care, this will happen.

How to think about API evolution

21

Hyrum’s Law

22

With a sufficient number of users of an
API, it does not matter what you
promise in the contract: all observable
behaviors of your system will be
depended on by somebody.

www.hyrumslaw.com

API evolution is a product management concern

23

Usability

Viability Feasibility

24

Viability - are we solving
a problem our users
have?

Reduction of cognitive load
or underlying complexity

Usability - are we making
it easy to use our
product?

Obviousness
Elegance
Stability

Feasibility - can we do
this in an architecturally
sound way?

Protecting downstream
systems

Product tradeoffs

Versioning is less an architectural solution than a product solution, and should be
evaluated within a product framework.

Remember Hyrum’s Law: your contract is a promise, not a guarantee!

Thank you!

Brandon Byars
Head of Technology
bbyars@thoughtworks.com

25

