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Confirm reservation



Booking a cruise
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Booking a cruise
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About me
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Experiences
● Led multiple digital platform engagements with a 

focus on API strategy

Books
● Testing microservices with mountebank

Articles on martinfowler.com
● Enterprise integration using REST
● You can’t buy integration
● API evolution without versioning



Some people, when 
confronted with a 
problem, think “I 
know, I’ll use 
versioning.” Now they 
have 2.1.0 problems.
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An adaptation of Jamie Zawinski’s famous dig on 
regular expressions
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MOVE 
FAST AND 

BREAK 
THINGS* 

* (THAT OTHER PEOPLE 
HAVE TO FIX)



Contract specifications as promises
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So why the word 
promise? 

… 
The term does not have 

the arrogance or hubris of 
the more frequently used 

guarantee, and that is 
good.

- Mark Burgess



Following the evolution of a complex API
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Stub 2
P1 P2Predicates:

Responses: R1R2

P3 Response
Resolver Behaviors

R1
B1 B2 Imposter

Interpret response

Post-process response

mountebank (https://www.mbtest.org) is a multi-protocol service 
virtualization tool controllable through a REST API

https://www.mbtest.org
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Obviousness
1.

Evaluating options from a consumer’s perspective

All strategies will be evaluating against the following criteria. There is one criteria 
missing, which is often the primary one used for decision making: implementation 
complexity.

Elegance
2.

Stability
3.

© 2022 Thoughtworks 



Evolution patterns
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Change by addition
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{

  "is": {

    "statusCode": 500,

    "body": "Error!!!"

  }

}

{

  "is": {

    "statusCode": 500,

    "body": "Error!!!"

  },
  "_behaviors": {

    "wait": 500

  }

}

Obviousness Elegance Stability

Add latency to the response



Multi-typing
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{

  "is": {

    "statusCode": 500,

    "body": "Error!!!"

  },
  "_behaviors": {

    "wait": 500

  }

}

{

  "is": {

    "statusCode": 500,

    "body": "Error!!!"

  },
  "_behaviors": {

    "wait": "() =>  Math.random() * 1000"
  }

}

Obviousness Elegance Stability

Allow the latency to be determined dynamically



Upcasting
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{

  "is": {

    "statusCode": 500,

    "body": "Error!!!"

  },
  "_behaviors": {

    "wait": 500,

        "shellTransform": "ruby ./time.rb"
  }
}

{

  "is": {

    "statusCode": 500,

    "body": "Error!!!"

  },
  "_behaviors": {

    "wait": 500,

        "shellTransform": ["ruby ./time.rb", 
"python lookup.py"]
  }
}

Obviousness Elegance Stability

Allow a pipeline of shell transformations instead of just one



Isn’t that a breaking 
change?
Of course it is!
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Versioning pushes the cost of the 
breaking change to the consumers.

Upcasting absorbs the cost of the 
breaking change in the producer.

function upcast (request) {

   upcastShellTransformToArray(request);

}

function upcastShellTransformToArray (request) {

   (request.stubs || []).forEach(stub => {

       (stub.responses || []).forEach(response => {

           if (response._behaviors && 

response._behaviors.shellTransform &&

               typeof 

response._behaviors.shellTransform === 'string') {

               response._behaviors.shellTransform = 

[response._behaviors.shellTransform];

           }

       });

   });

}

compatibility.upcast(request);



Nested upcasting
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{

  "is": { … },

  "_behaviors": {

    "wait": 500,

    "shellTransform": ["...", "..."],

    "lookup": [{ … }, { … }],

    "copy": [{ … }, { … }],

    "decorate": "...",

    "repeat": 3

  }

}

{
  "is": " { ... },
  "repeat": 3,
  "behaviors": [
    { "copy": { ... } },
    { "decorate": "..." },
    { "lookup": { … } },
    { "shellTransform": "..." },
    { "decorate": "..." },
    { "wait": 500 },
    { "shellTransform": "..." }
  ]
}

Obviousness Elegance Stability

Allow a pipeline of shell transformations instead of just one



Implementing nested 
upcasts
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The trick is to simply execute the 
upcasts in chronological order of 
change

function upcast (request) {

   upcastShellTransformToArray(request);

   upcastBehaviorsToArray(request);

}

compatibility.upcast(request);



Downcasting
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{

  "inject": "function (request, 

deprecatedLocalState, logger, callback, 

imposterState) { … }"

}

{

  "inject": "function (config) { … }"

}

Obviousness Elegance Stability

Replace complicated function signature with a Parameter Object



Implementing 
downcasting
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Downcasting can be considerably 
trickier to implement than upcasting, 
and has less applicability.

function downcastInjectionConfig (config) {

   if (config.request.method || config.request.data) {

       Object.keys(config.request).forEach(key => {

           config[key] = config.request[key];

       });

   }

}

function inject (request, fn, logger, imposterState) {

   return new Promise((done, reject) => {

       // Leave parameters for older interface

       const injected = `(${fn})(config, injectState, 

logger, done, imposterState);`,

           

 // ...

       compatibility.downcastInjectionConfig(config);

       // ...

   });

}



Hidden interfaces
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{

  "is": { … },
  "_behaviors": [

        "shellTransform": "node ./time.js"
  ]
}

var request = JSON.parse(process.argv[2]),

   response = JSON.parse(process.argv[3]);

var request = JSON.parse(process.env.MB_REQUEST),

   response = JSON.parse(process.env.MB_RESPONSE);

time.js

Obviousness Elegance Stability



Breaking hidden interfaces
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// Windows has a pretty low character limit to the command line. When we're in danger

// of the character limit, we'll remove the command line arguments under the assumption

// that backwards compatibility doesn't matter when it never would have worked to begin with

let fullCommand = `${command} ${quoteForShell(request)} ${quoteForShell(response)}`;

if (fullCommand.length >= maxShellCommandLength) {

   fullCommand = command;

}

In the worst case, hidden interfaces can break consumers using the published 
interface. 

Without care, this will happen.



How to think about API evolution
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Hyrum’s Law
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With a sufficient number of users of an 
API, it does not matter what you 
promise in the contract: all observable 
behaviors of your system will be 
depended on by somebody.

www.hyrumslaw.com



API evolution is a product management concern
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Usability

Viability Feasibility
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Viability - are we solving 
a problem our users 
have?

Reduction of cognitive load 
or underlying complexity

Usability - are we making 
it easy to use our 
product?

Obviousness
Elegance
Stability

Feasibility - can we do 
this in an architecturally 
sound way?

Protecting downstream 
systems

Product tradeoffs

Versioning is less an architectural solution than a product solution, and should be 
evaluated within a product framework.

Remember Hyrum’s Law: your contract is a promise, not a guarantee!



Thank you!

Brandon Byars
Head of Technology
bbyars@thoughtworks.com
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