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Inference Scaling and Compound Systems Are Coming

credit: 
https://x.com/DrJimFan/status/1834279865933332752
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

https://x.com/DrJimFan/status/1834279865933332752
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/


Ye (Charlotte) Qi

Had been running model services for 6.5 years

● Ads model serving
● LLaMa serving

Machine translation research before Meta

Background about Myself



500M

We Support Product Backend for Meta AI

Monthly active users



Behind the making of LLaMa



“Should I run my own LLM services?”

Question



Let’s Build This Step By Step

Summarize 
Charlotte’s 

posts and ask 
follow-ups



Challenge 1
Fitting

Challenge 2 Challenge 3 Challenge 4



STEP 1

Find a good 
runtime

Isn’t that just grabbing eval code?
Imagine every output token generation 

triggers one model.forward!

working on it!!!

prefill decode

https://docs.google.com/presentation/d/1uz7tclgFBYtW-rJ25d4h6PDt65R2cVwFip7B03F9XC4


Continuous Batching

The Most Basic Features to Search For (Available in All Popular Framework)

KV Cache

> How does KV cache work?

Imagine this sentence being 
generated by an LLM. KV 
tensors for yellow parts are 
cached in GPU memory at 
320KiB/tok (LLaMa3-70B), 
128KiB/tok (LLaMa3-8B) under 
bf16.

Prefill dec dec 

Prefill dec 

$$$
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Prefill
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Not this

Use this

TGI TensorRT-LLM

eos 



RDMA 4-14x

STEP 2

Understand 
hardware 
resources

TCP 1x

Back End NIC

Front End NIC

NVLink NVLink

PCIe PCIe

CPU GPU

https://docs.google.com/presentation/d/1uz7tclgFBYtW-rJ25d4h6PDt65R2cVwFip7B03F9XC4


Let’s Only Worry About Model Loading

40/80GB
NVIDIA A100

80/96GB
NVIDIA H100

192GB
AMD Mi300x



STEP 3: Start fitting some models with 80GB H100x8



bf16: 16GB < 80GB
LLaMa3-8B

STEP 3: Single-Card Inference



STEP 3: Distributed Inference: Tensor Parallelism

Partitioning Weights

bf16: 140GB < 80GB x 2
LLaMa3-70B



STEP 3: Distributed Inference: Pipeline Parallelism

Partitioning Weights Morebf16: 810GB < 80GB x 16
bf16: 810GB < 192GB x 8

LLaMa3-405B

Or Find GPUs With Bigger HBM



Takeaways

Find a specialized LLM runtime 
as your starting point

Understand system resources 
available on AI hardware

Use tensor/pipeline parallelism 
to fit your models

https://docs.google.com/presentation/d/1mxWu7AWmnzzTOxN8N4vrYrR4ysEzt27TKZS6XQprSrQ


Let’s Build This Step By Step (Part 2!)

I want more 
responsive 
follow-ups!



Challenge 1
It’s SlowFitting

Challenge 2 Challenge 3 Challenge 4



Throw 
capacity at 
the 
problem? 

Making it faster …?

credit: 
reddit.com/r/ProgrammerHumor/comments/hnlge5/why_solve_problems_
when_you_can_just_throw_money/

http://reddit.com/r/ProgrammerHumor/comments/hnlge5/why_solve_problems_when_you_can_just_throw_money/
http://reddit.com/r/ProgrammerHumor/comments/hnlge5/why_solve_problems_when_you_can_just_throw_money/


STEP 1 Throw More Capacity

Add more replicas Buy faster hardware

(Image credit: nvidia)

https://docs.google.com/presentation/d/1uz7tclgFBYtW-rJ25d4h6PDt65R2cVwFip7B03F9XC4


But it doesn’t seem to help …

credit: https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#command-line-arguments-for-the-server

https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#command-line-arguments-for-the-server


Prefill = read O(10GB) weight, compute O(1) - O(100) TFLOPs!
Decode = read O(10GB) weight, compute O(0.01) - O(0.1) TFLOPs for 
O(10)-O(100) times! And generate O(100KB) KV cache per token.

Why is That?… Let’s Understand System Bottleneck a Bit Deeper..

GPU COMPUTE MEMORY BANDWIDTH MEMORY CAPACITY

ComputeQuery:
Tell me a joke!

KV Cache

Next token: 
Yes

LLM 
Weights

Compute

Old Q:
Tell me a joke!

Next Q: Yes

Nest token:
once

LLM 
Weights

Tell me a joke!

KV Cache

Tell me a joke! Yes

Output Yes Output Yes once

Prefill Decode

Prefill
Decode

KV cache



Make LLM faster 
= Fit LLM operations within system resources
= Fit GPU compute + fit memory bandwidth + fit memory capacity

LLM Performance Principles

Prefill Decode KV Cache

Which scales ~ model sizes, sequence length, batch size

But each GPU has fixed configuration for system resource ratio 
🥹



Understand what’s reasonable expectation. Look at public benchmark data by

What Type of Slowness are You Talking About…

Prefill dec dec dec dec eos dec dec dec dec dec dec dec dec dec dec dec dec 

TTFT TTIT / TTOT / Output Speed

End-to-end latency

Model Size Input Length Output Length

Hardware Choice Cost Quality Trade-off



You are unhappy with average generation speed

STEP 1 Throw Capacity … More Wisely
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As context window gets longer

STEP 1 Throw Capacity … More Wisely
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Disaggregated 
prefill/decode improve 
latency-bound 
throughput and reduce 
tail decode latency

STEP 1 Throw Capacity More Wisely – Using Disaggregated Prefill/Decode

3 PREFILL HOSTS

1 DECODE HOST

→        Replicating Weights



STEP 1 Throw Capacity Wisely – Using Context Parallelism

3+3 PREFILL HOSTS

1 DECODE HOST

Replicating Weights 
Partitioning Context→

1 min for 128K input 
without parallelism





Shorter Prompts

STEP 2 Make Your Problems Smaller

Be a good and concise communicator to LLM

Quantization
Many components to choose (FFN / KV / ATTN)

Different data types (INT8 / FP8 / INT4 / NF4)

Different policies to choose (W8A8 / W4A16 / 
tensor-wise / row-wise / group-wise)

Smaller Models
Fine-tuning small generalist

Distillation / pruning

Tokens

Query  

Problem
Size

FLOPs

Token

FLOPS

Hardware~ x x



STEP 3 Prefix Caching

Credit: https://arxiv.org/abs/2205.14135

MESSAGE 1 RESPONSE 1 MESSAGE 2 RESPONSE 2 MESSAGE 3

RECOMPUTION

USER STAY IN CONVERSATION WITH THE BOT

HBM 1x 

DRAM 3x 

Flash 30x 

-50% 
is common

With
paging

https://arxiv.org/abs/2205.14135


STEP 4 Study More Domain Specific Optimizations

Technique TTFT TTIT $ Quality

Speculative Decoding 😶 🤗 😨-😶 😶

Chunked Prefill 😨 🙂 😶 😶

Attention Kernels 🙂-🤗 😶-🙂 🙂 😶

Token Sparsity 🤗 🤗 🤗 😨

Typically … 

for your unique workload requirement, 
every 🤗🙂😨😶 may be flipped



What We’ve Learned So Far

Serving Engine

Kernels
KV Cache

Continuous 
Batching

Memory 
Management

Distributed 
Inference

Input / Model 
Compression

10x 20x-40x

Get Basics Correct Distributed, Smaller, 
Caching

Domain Specific 
Inference Optimizations

40x-

Decoding 
Algorithms

Model 
Architecture



“Did you do all of these at Meta?”

Question



Let’s Build This Step By Step (Part 3!)

Time to launch 
me!



Challenge 1
It’s Slow ProductionFitting

Challenge 2 Challenge 3 Challenge 4





What Do You  See in Production?

%

INPUT LENGTH

ONE-OFF

MULTI-TURN

SUMMARIZATION

RE
Q

U
ES

TS

TIME

DAILY PEAKS

EVENTS

Input length and traffic change over time

What about annotation, 
summarization, feature generation?

In:out? 10:1, 3:1, 1:5, …



What Do You  See in Production? (Cont.)

Customer SLOs More Than 1 Model

🤗

😨

Reward

Safety
1

Chat

Plan
Safety 

2

What you 
wish:

What 
customer 
wants:



The Hard Lessons from Reality



Trade-offs!
QUALITY

LATENCY

COST

THROUGHPUT

RELIABILITY

● Reliability: 
○ Understand the cost of 

different 9s
● Latency: average adult 

○ Reads English @ 200-300 
words per minute

○ Speaks English @ 150-200 
words per minute 

STEP 1: Understand If Anything Can be Traded Off 

credit: 
https://www.sciencedirect.com/science/article/pii/S0749596X19300786
https://virtualspeech.com/blog/average-speaking-rate-words-per-minute

https://www.sciencedirect.com/science/article/pii/S0749596X19300786
https://virtualspeech.com/blog/average-speaking-rate-words-per-minute


STEP 2: Look at E2E Latency - Network

200ms 75
ms

75
ms

150
ms

Inference

Network RTT

400ms

 x2

Downloading 
media

Business Logic

Note: This data is made up and does not represent real latency at Meta.

https://docs.google.com/presentation/d/1WssHLAghS1Ok1K5F5LPdXs2QuLd5vxEEXrXkWSEWi5I


YES,

STEP 2: Look at E2E Latency  - Disagg

BUT,

dec dec 

PrefillPrefill

Prefill

dec dec dec dec 

Prefill

Prefill

Decode

O(100M) KV Cache
Waiting for the Bus

Compute & transfer overlap, system scheduling optimization



STEP 3: Look at E2E Caching  - Prefix Caching

BUT,

Prefill
Tokens

YES,

Cached
Tokens

Turn 1 Message 1 Message 2 Message 3

Message 2 Message 3 Message 4Turn 2

Sticky Route Offload

CLIENT INFERENCE 
SERVERS

DISTRIBUTED 
CACHE

Construct Prompts

CHAT HISTORY

product x infra co-design to maximize cache hit rate



STEP 3: Look at E2E Quality  - Quantization

BUT,

MMLU 
fp8

YES,

MMLU 
bf16

I’m 
getting 
worse

Build you own product eval



STEP 3: Look at E2E Quality  - CI/CD

❤
Credit: https://www.mabl.com/blog/what-is-cicd

credit: https://ai.meta.com/blog/meta-llama-3-1/

https://www.mabl.com/blog/what-is-cicd
https://ai.meta.com/blog/meta-llama-3-1/


Takeaways

We lose theoretical performance in 
production environment A LOT

Non-inference latency is substantial

Infra x product co-design to 
optimize effective cache hit rate

Continuously test acceleration 
techniques using product signals

https://docs.google.com/presentation/d/1mxWu7AWmnzzTOxN8N4vrYrR4ysEzt27TKZS6XQprSrQ


Let’s Build This Step By Step (Part 4!)

Charlotte’s post is 
boring. Let users 
customize their 

subscriptions



Challenge 1
It’s Slow ProductionFitting

Challenge 2 Challenge 3 Challenge 4
Scaling



Let’s build a 
rocket and make 
it fly!



What Will Scale?

● Number of Deployments
● Number of GPUs
● Number of Developers
● Number of Models

As You Grow Your APPs



STEP 1: Scale Number of Deployments - Allocation at Scale (Physical Availability)

BUT,

Prefill

Decode

YES,

Prefill

Compute Heavy?

Hardware P with 
Higher Peak FLOPS

Memory 
Bandwidth Heavy?

Hardware D w/ 
Higher Peak GB/s

D DD D

D DD D

Region 2

P DP P

P PP P

Region 1



STEP 1: Scale Number of Deployments - Allocation at Scale (Shared Fate)

BUT,YES,

RDMA

Partition 1 Partition 2🤗

Partition 3 Partition 4

RDMA

Partition 1 Partition 2

Partition 3 Partition 4

☠😨

😨 😨



STEP 1: Scale Number of Deployments - Allocation at Scale (Capacity Constraints)

Autoscaler

Deployment 1
Deplo
yment 

2
Deployment 3

Your Capacity Limit

��
Get Bigger



STEP 1: Scale Number of Deployments - Allocation at Scale 

Deployment 
Solver

Deployment 
Allocator

Network 
Topology

Maintenance
Event

Inference
Demand

Inference
Supply

Shard 
Placement

LLM Deployment



STEP 2 Inference Optimization At Scale

Solution Latency Quality Complexity Price

1 ⭕ ✅ ⭕ $$

2 ✅ ⭕ ⭕ $

3 ✅ ✅ ✅ $$$

Inference Menu

Workload A

Workload B

Solution 2

Solution 3

Solution 1



STEP 2: Inference Optimization At Scale (Autoscaling)

BUT,YES,

🤔

How to use these free 
capacity? achievable with 

inference 
optimizations



STEP 2: Inference Optimization At Scale (Where to Focus)

RealityGuess
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STEP 2: Inference Optimization At Scale (Data Driven Cost Reduction)

Ideal 
Throughput

Achievable 
Throughput

Provisioned 
Throughput Used 

Throughput

Used 
Throughput

Provisioned 
Throughput

Achievable 
Throughput

Data



Traffic Behind the Scene

STEP 3: Scale Number of Models / Developers - Model Management at Scale 

Charlotte’s post is 
boring. Let users 
customize their 

subscriptions

60% 10
%

10
%

10
%

10
%

Default Models Launch Candidate

Model A

Model B

Model C

Model D



Putting together everything we talked 
so far … You’ll get a scalable LLM 
serving infrastructure!



Model 
Runner

Execution 
Engine

Model Hardware

Allocation Deployment
Management

Monitoring Integration Scheduling Evaluation

Quota 
Management

Model 
Management

Routing

Interface

Acceleration 
Techniques

Experimentation

LLM 
Service

LLM 
Runtime

LLM

LLM 
Serving
Infra

THE LLM SERVING ICEBERG




