
Scaling Large Language Model
Serving Infrastructure at Meta
A comprehensive recipe to turn LLMs into LLM serving infrastructure

Ye (Charlotte) Qi
AI Inference @ Meta

https://docs.google.com/presentation/d/1R_KOt030TA_ORPt72M264TQK_cwmL7MWSQRiiWgluws

The AI Gold Rush

CO
M

PU
TE

CONTEXT WINDOW

CO
M

PU
TE

OF PARAMETERS

Inference Scaling and Compound Systems Are Coming

credit:
https://x.com/DrJimFan/status/1834279865933332752
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

https://x.com/DrJimFan/status/1834279865933332752
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

Ye (Charlotte) Qi

Had been running model services for 6.5 years

● Ads model serving
● LLaMa serving

Machine translation research before Meta

Background about Myself

500M

We Support Product Backend for Meta AI

Monthly active users

Behind the making of LLaMa

“Should I run my own LLM services?”

Question

Let’s Build This Step By Step

Summarize
Charlotte’s

posts and ask
follow-ups

Challenge 1
Fitting

Challenge 2 Challenge 3 Challenge 4

STEP 1

Find a good
runtime

Isn’t that just grabbing eval code?
Imagine every output token generation

triggers one model.forward!

working on it!!!

prefill decode

https://docs.google.com/presentation/d/1uz7tclgFBYtW-rJ25d4h6PDt65R2cVwFip7B03F9XC4

Continuous Batching

The Most Basic Features to Search For (Available in All Popular Framework)

KV Cache

> How does KV cache work?

Imagine this sentence being
generated by an LLM. KV
tensors for yellow parts are
cached in GPU memory at
320KiB/tok (LLaMa3-70B),
128KiB/tok (LLaMa3-8B) under
bf16.

Prefill dec dec

Prefill dec

$$$

dec dec eos

dec

dec

dec

dec

dec

dec

dec

dec

dec

dec

Prefill dec

dec

dec

dec

Prefill

dec

dec

eos

dec

Not this

Use this

TGI TensorRT-LLM

eos

RDMA 4-14x

STEP 2

Understand
hardware
resources

TCP 1x

Back End NIC

Front End NIC

NVLink NVLink

PCIe PCIe

CPU GPU

https://docs.google.com/presentation/d/1uz7tclgFBYtW-rJ25d4h6PDt65R2cVwFip7B03F9XC4

Let’s Only Worry About Model Loading

40/80GB
NVIDIA A100

80/96GB
NVIDIA H100

192GB
AMD Mi300x

STEP 3: Start fitting some models with 80GB H100x8

bf16: 16GB < 80GB
LLaMa3-8B

STEP 3: Single-Card Inference

STEP 3: Distributed Inference: Tensor Parallelism

Partitioning Weights

bf16: 140GB < 80GB x 2
LLaMa3-70B

STEP 3: Distributed Inference: Pipeline Parallelism

Partitioning Weights Morebf16: 810GB < 80GB x 16
bf16: 810GB < 192GB x 8

LLaMa3-405B

Or Find GPUs With Bigger HBM

Takeaways

Find a specialized LLM runtime
as your starting point

Understand system resources
available on AI hardware

Use tensor/pipeline parallelism
to fit your models

https://docs.google.com/presentation/d/1mxWu7AWmnzzTOxN8N4vrYrR4ysEzt27TKZS6XQprSrQ

Let’s Build This Step By Step (Part 2!)

I want more
responsive
follow-ups!

Challenge 1
It’s SlowFitting

Challenge 2 Challenge 3 Challenge 4

Throw
capacity at
the
problem?

Making it faster …?

credit:
reddit.com/r/ProgrammerHumor/comments/hnlge5/why_solve_problems_
when_you_can_just_throw_money/

http://reddit.com/r/ProgrammerHumor/comments/hnlge5/why_solve_problems_when_you_can_just_throw_money/
http://reddit.com/r/ProgrammerHumor/comments/hnlge5/why_solve_problems_when_you_can_just_throw_money/

STEP 1 Throw More Capacity

Add more replicas Buy faster hardware

(Image credit: nvidia)

https://docs.google.com/presentation/d/1uz7tclgFBYtW-rJ25d4h6PDt65R2cVwFip7B03F9XC4

But it doesn’t seem to help …

credit: https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#command-line-arguments-for-the-server

https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#command-line-arguments-for-the-server

Prefill = read O(10GB) weight, compute O(1) - O(100) TFLOPs!
Decode = read O(10GB) weight, compute O(0.01) - O(0.1) TFLOPs for
O(10)-O(100) times! And generate O(100KB) KV cache per token.

Why is That?… Let’s Understand System Bottleneck a Bit Deeper..

GPU COMPUTE MEMORY BANDWIDTH MEMORY CAPACITY

ComputeQuery:
Tell me a joke!

KV Cache

Next token:
Yes

LLM
Weights

Compute

Old Q:
Tell me a joke!

Next Q: Yes

Nest token:
once

LLM
Weights

Tell me a joke!

KV Cache

Tell me a joke! Yes

Output Yes Output Yes once

Prefill Decode

Prefill
Decode

KV cache

Make LLM faster
= Fit LLM operations within system resources
= Fit GPU compute + fit memory bandwidth + fit memory capacity

LLM Performance Principles

Prefill Decode KV Cache

Which scales ~ model sizes, sequence length, batch size

But each GPU has fixed configuration for system resource ratio
🥹

Understand what’s reasonable expectation. Look at public benchmark data by

What Type of Slowness are You Talking About…

Prefill dec dec dec dec eos dec dec dec dec dec dec dec dec dec dec dec dec

TTFT TTIT / TTOT / Output Speed

End-to-end latency

Model Size Input Length Output Length

Hardware Choice Cost Quality Trade-off

You are unhappy with average generation speed

STEP 1 Throw Capacity … More Wisely

dec

dec

dec

dec

dec

dec

dec

dec

dec

dec

Prefill dec

dec

dec

dec

Prefill

dec

dec

eos

dec

As context window gets longer

STEP 1 Throw Capacity … More Wisely

dec

dec

dec

dec

dec

dec

dec

dec

dec

dec

Prefill dec

dec

dec

dec

Prefill

dec

dec

eos

dec

Disaggregated
prefill/decode improve
latency-bound
throughput and reduce
tail decode latency

STEP 1 Throw Capacity More Wisely – Using Disaggregated Prefill/Decode

3 PREFILL HOSTS

1 DECODE HOST

→ Replicating Weights

STEP 1 Throw Capacity Wisely – Using Context Parallelism

3+3 PREFILL HOSTS

1 DECODE HOST

Replicating Weights
Partitioning Context→

1 min for 128K input
without parallelism

Shorter Prompts

STEP 2 Make Your Problems Smaller

Be a good and concise communicator to LLM

Quantization
Many components to choose (FFN / KV / ATTN)

Different data types (INT8 / FP8 / INT4 / NF4)

Different policies to choose (W8A8 / W4A16 /
tensor-wise / row-wise / group-wise)

Smaller Models
Fine-tuning small generalist

Distillation / pruning

Tokens

Query

Problem
Size

FLOPs

Token

FLOPS

Hardware~ x x

STEP 3 Prefix Caching

Credit: https://arxiv.org/abs/2205.14135

MESSAGE 1 RESPONSE 1 MESSAGE 2 RESPONSE 2 MESSAGE 3

RECOMPUTION

USER STAY IN CONVERSATION WITH THE BOT

HBM 1x

DRAM 3x

Flash 30x

-50%
is common

With
paging

https://arxiv.org/abs/2205.14135

STEP 4 Study More Domain Specific Optimizations

Technique TTFT TTIT $ Quality

Speculative Decoding 😶 🤗 😨-😶 😶

Chunked Prefill 😨 🙂 😶 😶

Attention Kernels 🙂-🤗 😶-🙂 🙂 😶

Token Sparsity 🤗 🤗 🤗 😨

Typically …

for your unique workload requirement,
every 🤗🙂😨😶 may be flipped

What We’ve Learned So Far

Serving Engine

Kernels
KV Cache

Continuous
Batching

Memory
Management

Distributed
Inference

Input / Model
Compression

10x 20x-40x

Get Basics Correct Distributed, Smaller,
Caching

Domain Specific
Inference Optimizations

40x-

Decoding
Algorithms

Model
Architecture

“Did you do all of these at Meta?”

Question

Let’s Build This Step By Step (Part 3!)

Time to launch
me!

Challenge 1
It’s Slow ProductionFitting

Challenge 2 Challenge 3 Challenge 4

What Do You See in Production?

%

INPUT LENGTH

ONE-OFF

MULTI-TURN

SUMMARIZATION

RE
Q

U
ES

TS

TIME

DAILY PEAKS

EVENTS

Input length and traffic change over time

What about annotation,
summarization, feature generation?

In:out? 10:1, 3:1, 1:5, …

What Do You See in Production? (Cont.)

Customer SLOs More Than 1 Model

🤗

😨

Reward

Safety
1

Chat

Plan
Safety

2

What you
wish:

What
customer
wants:

The Hard Lessons from Reality

Trade-offs!
QUALITY

LATENCY

COST

THROUGHPUT

RELIABILITY

● Reliability:
○ Understand the cost of

different 9s
● Latency: average adult

○ Reads English @ 200-300
words per minute

○ Speaks English @ 150-200
words per minute

STEP 1: Understand If Anything Can be Traded Off

credit:
https://www.sciencedirect.com/science/article/pii/S0749596X19300786
https://virtualspeech.com/blog/average-speaking-rate-words-per-minute

https://www.sciencedirect.com/science/article/pii/S0749596X19300786
https://virtualspeech.com/blog/average-speaking-rate-words-per-minute

STEP 2: Look at E2E Latency - Network

200ms 75
ms

75
ms

150
ms

Inference

Network RTT

400ms

 x2

Downloading
media

Business Logic

Note: This data is made up and does not represent real latency at Meta.

https://docs.google.com/presentation/d/1WssHLAghS1Ok1K5F5LPdXs2QuLd5vxEEXrXkWSEWi5I

YES,

STEP 2: Look at E2E Latency - Disagg

BUT,

dec dec

PrefillPrefill

Prefill

dec dec dec dec

Prefill

Prefill

Decode

O(100M) KV Cache
Waiting for the Bus

Compute & transfer overlap, system scheduling optimization

STEP 3: Look at E2E Caching - Prefix Caching

BUT,

Prefill
Tokens

YES,

Cached
Tokens

Turn 1 Message 1 Message 2 Message 3

Message 2 Message 3 Message 4Turn 2

Sticky Route Offload

CLIENT INFERENCE
SERVERS

DISTRIBUTED
CACHE

Construct Prompts

CHAT HISTORY

product x infra co-design to maximize cache hit rate

STEP 3: Look at E2E Quality - Quantization

BUT,

MMLU
fp8

YES,

MMLU
bf16

I’m
getting
worse

Build you own product eval

STEP 3: Look at E2E Quality - CI/CD

❤
Credit: https://www.mabl.com/blog/what-is-cicd

credit: https://ai.meta.com/blog/meta-llama-3-1/

https://www.mabl.com/blog/what-is-cicd
https://ai.meta.com/blog/meta-llama-3-1/

Takeaways

We lose theoretical performance in
production environment A LOT

Non-inference latency is substantial

Infra x product co-design to
optimize effective cache hit rate

Continuously test acceleration
techniques using product signals

https://docs.google.com/presentation/d/1mxWu7AWmnzzTOxN8N4vrYrR4ysEzt27TKZS6XQprSrQ

Let’s Build This Step By Step (Part 4!)

Charlotte’s post is
boring. Let users
customize their

subscriptions

Challenge 1
It’s Slow ProductionFitting

Challenge 2 Challenge 3 Challenge 4
Scaling

Let’s build a
rocket and make
it fly!

What Will Scale?

● Number of Deployments
● Number of GPUs
● Number of Developers
● Number of Models

As You Grow Your APPs

STEP 1: Scale Number of Deployments - Allocation at Scale (Physical Availability)

BUT,

Prefill

Decode

YES,

Prefill

Compute Heavy?

Hardware P with
Higher Peak FLOPS

Memory
Bandwidth Heavy?

Hardware D w/
Higher Peak GB/s

D DD D

D DD D

Region 2

P DP P

P PP P

Region 1

STEP 1: Scale Number of Deployments - Allocation at Scale (Shared Fate)

BUT,YES,

RDMA

Partition 1 Partition 2🤗

Partition 3 Partition 4

RDMA

Partition 1 Partition 2

Partition 3 Partition 4

☠😨

😨 😨

STEP 1: Scale Number of Deployments - Allocation at Scale (Capacity Constraints)

Autoscaler

Deployment 1
Deplo
yment

2
Deployment 3

Your Capacity Limit

��
Get Bigger

STEP 1: Scale Number of Deployments - Allocation at Scale

Deployment
Solver

Deployment
Allocator

Network
Topology

Maintenance
Event

Inference
Demand

Inference
Supply

Shard
Placement

LLM Deployment

STEP 2 Inference Optimization At Scale

Solution Latency Quality Complexity Price

1 ⭕ ✅ ⭕ $$

2 ✅ ⭕ ⭕ $

3 ✅ ✅ ✅ $$$

Inference Menu

Workload A

Workload B

Solution 2

Solution 3

Solution 1

STEP 2: Inference Optimization At Scale (Autoscaling)

BUT,YES,

🤔

How to use these free
capacity? achievable with

inference
optimizations

STEP 2: Inference Optimization At Scale (Where to Focus)

RealityGuess

Head

tail tail tail tail tail

Head

tail tail tail tail tail

tail tail tail tail tail

tail tail tail tail tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail tail

tail tail tail tail tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail

tail tail tail tail

tail

STEP 2: Inference Optimization At Scale (Data Driven Cost Reduction)

Ideal
Throughput

Achievable
Throughput

Provisioned
Throughput Used

Throughput

Used
Throughput

Provisioned
Throughput

Achievable
Throughput

Data

Traffic Behind the Scene

STEP 3: Scale Number of Models / Developers - Model Management at Scale

Charlotte’s post is
boring. Let users
customize their

subscriptions

60% 10
%

10
%

10
%

10
%

Default Models Launch Candidate

Model A

Model B

Model C

Model D

Putting together everything we talked
so far … You’ll get a scalable LLM
serving infrastructure!

Model
Runner

Execution
Engine

Model Hardware

Allocation Deployment
Management

Monitoring Integration Scheduling Evaluation

Quota
Management

Model
Management

Routing

Interface

Acceleration
Techniques

Experimentation

LLM
Service

LLM
Runtime

LLM

LLM
Serving
Infra

THE LLM SERVING ICEBERG

