
AOP in the Enterprise

Adrian Colyer
CTO
Interface21

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Agenda

�Where does AOP fit?

�Matching requirements to implementation

�AOP in Spring 2.5

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Simple
Object

Simple
Object

D
ep
en
de
nc
y
In
je
ct
io
n

A
O
P

Portable Service Abstractions

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

the vocabulary of enterprise applications

service layer

dao
repository

web layer

data access layer
controller

business service

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Requirements

� the service layer should be transactional

� when a Hibernate dao operation fails the exception
should be translated

� a business service that fails with a concurrency
related failure can be retried

�service layer objects should not call the web layer

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

It would be simpler…

 and more powerful

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

if we could use these

 abstractions

directly in the

 implementation

terms

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

terms -> abstractions
@Aspect
public class SystemArchitecture {

 @Pointcut("within(a.b.c.service..*")
 public void inServiceLayer() {}

 @Pointcut("within(a.b.c.dao..*")
 public void inDataAccessLayer() {}

 @Pointcut("execution(* a.b.c.service.*.*(..))")
 public void businessService() {}

 …
}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Requirements

➔ the service layer should be transactional

– when a Hibernate dao operation fails the
exception should be translated

– a business service that fails with a concurrency
related failure can be retried

– service layer objects should not call the web
layer

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Transactional service layer...

<aop:config>
 <aop:advisor
 pointcut="SystemArchitecture.businessService()"
 advice-ref="tx-demarcation"/>
</aop:config>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Transaction metadata

 <tx:advice id="tx-demarcation">
 <method name="*"
 propagation="REQUIRED"
 isolation="DEFAULT"/>
 </tx:advice>

➔ Gives us TX-REQUIRED semantics for the

service layer

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Transactional annotation

/**

 * default to required, read-write for all

 * operations

 */

@Transactional

public class AccountService {

 /** this one is read-only… */

 @Transactional(readOnly=true)

 public Account getAccount(AccountNum accNo) {

 …

 }

 …

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Transactional annotation

� Now the configuration just becomes…

<!– tell Spring to perform transaction demarcation on

bean operations based on @Transactional annotations

-->

<tx:annotation-driven/>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Requirements

✔ the service layer should be transactional
➔ when a Hibernate dao operation fails the
exception should be translated

● a business service that fails with a concurrency
related failure can be retried

● service layer objects should not call the web layer

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Scenario…

� You have your own data access layer written using

Hibernate 3

• not using the Spring HibernateTemplate

� In the service layer, you want to insulate yourself from

Hibernate exceptions, and take advantage of Spring's fine-

grained DataAccessException hierarchy

� After throwing a hibernate exception from a data access

operation, convert it into a DataAccessException…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Step 1: Define the abstraction

@Aspect
public class SystemArchitecture {

 …

 @Pointcut("execution(* a.b.c.dao.*.*(..))")
 public void dataAccessOperation() {}

 …
}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

 "After throwing a hibernate exception from a

data access operation, convert it into a

DataAccessException…"

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Step 2: use the abstraction

@AfterThrowing(

 throwing="hibernateEx",

 pointcut="SystemArchitecture.dataAccessOperation()")

public void rethrowAsDataAccessException(

 HibernateException hibernateEx) {

 // convert exception and rethrow…

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Where does advice live?

� Advice is declared in an aspect

� Aspects are like classes

• instances

• state (fields)

• behaviour (methods)

� Aspects can also have

• pointcuts

• advice

• and a few other things…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Aspect

@Aspect

public class HibernateExceptionTranslator {

 // …

@AfterThrowing(

 throwing="hibernateEx",

 pointcut="SystemArchitecture.dataAccessOperation()"

)

public void rethrowAsDataAccessException(

 HibernateException hibernateEx) {

 // convert exception and rethrow…

}

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Step 3: Configuration

<aop:aspectj-autoproxy/>

<context:component-scan>
 <context:include-filter type="annotation"
 expression="org.aspectj.lang.annotation.Aspect"/>
</context:component-scan>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Schema alternative

� For JDK 1.4 and below

� The exact same aspect can be declared in Spring XML,

backed by a plain Java class

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Schema-based configuration

<aop:config>

 <aop:aspect ref="hibernateExceptionTranslator">
 <aop:after-throwing
 throwing="hibernateEx"
 pointcut="SystemArchitecture.dataAccessOperation()"
 method="rethrowAsDataAccessException"/>
 </aop:aspect>

</aop:config>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Bean Implementation

public class HibernateExceptionTranslator {

 private HibernateTemplate hibernateTemplate;

 public void setHibernateTemplate(

 HibernateTemplate aTemplate){

 this.hibernateTemplate = aTemplate;

 }

 public void rethrowAsDataAccessException(

 HibernateException hibernateEx) {

 throw this.hibernateTemplate

 .convertHibernateAccessException(hibernateEx);

 }

} parameter bound
in pcut expression

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

@Repository

� This exception translation is available "out of the box"

in Spring 2.0 and above

� Simply annotate repository / dao objects with

@Repository

� Define the exception translation bean in your

configuration

• PersistenceExceptionTranslationPostProcessor

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Requirements

✔ the service layer should be transactional

✔ when a Hibernate dao operation fails the exception
should be translated

➔ a business service that fails with a deadlock
loser failure can be retried

● service layer objects should not call the web layer

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Retry

�One subtype of DataAccessException is…

• DeadlockLoserDataAccessException

�Deadlock failures are potentially recoverable

• If the operation is idempotent, we can retry it*

�We need a DeadlockLoserRetry aspect…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Deadlock Loser Recovery

@Aspect
public class DeadlockLoserRetry {
 private static final int DEFAULT_MAX_ATTEMPTS = 3;
 private int maxAttempts = DEFAULT_MAX_ATTEMPTS;

 /** configurable via dependency injection */
 public void setMaxAttempts(int newMax) {
 this.maxAttempts = newMax;
 }

 …

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Deadlock Loser Recovery

@Around("idempotentOperation()")
public Object retryDeadlockLosers(ProceedingJoinPoint pjp)
throws Throwable {
 int attempts = 0;
 DeadlockLoserDataAccessException loserEx = null;
 while (attempts++ < maxAttempts) {
 try {
 return pjp.proceed();
 }
 catch (DeadlockLoserDataAccessException ex) {
 loserEx = ex;
 }
 }
 throw loserEx;
}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

 Schema-based equivalent

<aop:config>

 <aop:aspect ref="deadlockLoserRetry">
 <aop:pointcut id="idempotentOperation"
 expression= "SystemArchitecture.businessService()"/>

 <aop:around
 pointcut-ref="idempotentOperation"
 method="doConcurrentOperation"/>
 </aop:aspect>

</aop:config>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Schema-based Equivalent

<bean id="deadlockLoserRetry"
 class="DeadlockLoserRetry">
 <property name="maxAttempts" value="2"/>
</bean>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Recap:

� Created an abstraction: idempotentOperation

� Used around advice to retry failing

idempotentOperations

� Packaged in a ConcurrentOperationExecutor aspect

� Configured using Spring

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Idempotent operations

� It would be nice if all of our service layer

operations were idempotent

�But what if some of them aren't?

�We'd need a way to identify and retry only the

idempotent subset…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Idempotent operations

@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Idempotent operations

� Just update the abstraction (pointcut

expression)…

 <aop:pointcut id="idempotentOperation"
 expression=
 "SystemArchitecture.businessService()
 and @annotation(Idempotent)"/>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Requirements

✔ the service layer should be transactional

✔ when a Hibernate dao operation fails the exception
should be translated

✔ a business service that fails with a concurrency
related failure can be retried

➔ service layer objects should not call the web
layer

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Permitted component interactions
/** … */

public aspect SystemArchitecture {

 …

 /*

 * no other module should depend on the

 * web tier

 */

 declare warning

 : callToWebTier() && !inWebTier()

 : "no external dependencies on web tier";

 …

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Demo

� Hibernate usage guidelines…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

AOP in Spring 2.5

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.5 AOP

�Aspects are defined in Spring configuration file

• supports both XML based definition

• and @AspectJ aspects

�XML defined aspects are backed by regular

classes

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.5 and AspectJ

� Spring and AspectJ are still distinct projects

� Spring just uses the AspectJ pointcut parsing and

matching APIs

• using AspectJ as a library, not as a weaving engine

� Gives the same syntax and semantics across Spring

AOP and AspectJ

• perfect if you are going to use both

• or start out with Spring AOP, and then want to introduce

AspectJ at some point

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

New in Spring 2.5

• bean()

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

New in Spring 2.5

• <context:load-time-weaver/>

– aspectj-weaving="on|off|autodetect"

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Summary
�We want to implement enterprise requirements in as

simple and straightforward a manner as possible

• use the appropriate implementation "vocabulary"

� AOP provides the necessary abstractions

� AspectJ and Spring AOP are the leading AOP

implementations

• tightly integrated

• Can use together or independently

Questions?

