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Agenda

�Where does AOP fit?

�Matching requirements to implementation

�AOP in Spring 2.5
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the vocabulary of enterprise applications

service layer

dao
repository

web layer

data access layer
controller

business service
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Requirements

� the service layer should be transactional

� when a Hibernate dao operation fails the exception 
should be translated

� a business service that fails with a concurrency 
related failure can be retried 

�service layer objects should not call the web layer
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It would be simpler…

     and more  powerful
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if we could use these 

    abstractions 

directly in the 

     implementation

terms
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terms -> abstractions
@Aspect
public class SystemArchitecture {

  @Pointcut("within(a.b.c.service..*")
  public void inServiceLayer() {}

  @Pointcut("within(a.b.c.dao..*")
  public void inDataAccessLayer() {}

  @Pointcut("execution(* a.b.c.service.*.*(..))")
  public void businessService() {}

  …
}
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Requirements

➔ the service layer should be transactional

– when a Hibernate dao operation fails the 
exception should be translated

– a business service that fails with a concurrency 
related failure can be retried 

– service layer objects should not call the web 
layer
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Transactional service layer...

<aop:config>
  <aop:advisor 
      pointcut="SystemArchitecture.businessService()"
      advice-ref="tx-demarcation"/>
</aop:config>
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Transaction metadata

  <tx:advice id="tx-demarcation">
    <method name="*"
       propagation="REQUIRED"
       isolation="DEFAULT"/>
  </tx:advice>

➔ Gives us TX-REQUIRED semantics for the 

service layer
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Transactional annotation

/** 

 * default to required, read-write for all 

 *  operations

 */

@Transactional

public class AccountService {

  /** this one is read-only… */

  @Transactional(readOnly=true)

  public Account getAccount(AccountNum accNo) {

   …

  }

  …

}
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Transactional annotation

� Now the configuration just becomes…

<!– tell Spring to perform transaction demarcation on 

bean operations based on @Transactional annotations 

-->

<tx:annotation-driven/>
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Requirements

✔  the service layer should be transactional
➔  when a Hibernate dao operation fails the 
exception should be translated

● a business service that fails with a concurrency 
related failure can be retried

● service layer objects should not call the web layer
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Scenario…

� You have your own data access layer written using 

Hibernate 3

• not using the Spring HibernateTemplate

� In the service layer, you want to insulate yourself from 

Hibernate exceptions, and take advantage of Spring's fine-

grained DataAccessException hierarchy

� After throwing a hibernate exception from a data access 

operation, convert it into a DataAccessException…
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Step 1: Define the abstraction

@Aspect
public class SystemArchitecture {

  …

  @Pointcut("execution(* a.b.c.dao.*.*(..))")
  public void dataAccessOperation() {}

  …
}
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 "After throwing a hibernate exception from a 

data access operation, convert it into a 

DataAccessException…"
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Step 2: use the abstraction

@AfterThrowing(

  throwing="hibernateEx",

  pointcut="SystemArchitecture.dataAccessOperation()" )

public void rethrowAsDataAccessException(

  HibernateException hibernateEx) {

  // convert exception and rethrow…

}
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Where does advice live?

� Advice is declared in an aspect

� Aspects are like classes

• instances

• state (fields)

• behaviour (methods)

� Aspects can also have

• pointcuts

• advice

• and a few other things…
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Aspect

@Aspect

public class HibernateExceptionTranslator {

       // …

@AfterThrowing(

  throwing="hibernateEx",

  pointcut="SystemArchitecture.dataAccessOperation()"

)

public void rethrowAsDataAccessException(

  HibernateException hibernateEx) {

  // convert exception and rethrow…

}

}
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Step 3: Configuration

<aop:aspectj-autoproxy/>

<context:component-scan>
  <context:include-filter type="annotation"
      expression="org.aspectj.lang.annotation.Aspect"/>
</context:component-scan>



Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or 
distributing without expressed written permission is prohibited.

Schema alternative

� For JDK 1.4 and below

� The exact same aspect can be declared in Spring XML, 

backed by a plain Java class
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Schema-based configuration

<aop:config>

  <aop:aspect ref="hibernateExceptionTranslator">
     <aop:after-throwing
         throwing="hibernateEx"        
         pointcut="SystemArchitecture.dataAccessOperation()"
         method="rethrowAsDataAccessException"/>
  </aop:aspect>

</aop:config>
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Bean Implementation

public class HibernateExceptionTranslator {

  private HibernateTemplate hibernateTemplate;

  public void setHibernateTemplate(

    HibernateTemplate aTemplate){

    this.hibernateTemplate = aTemplate;

  }

  public void rethrowAsDataAccessException(

       HibernateException hibernateEx) {

    throw this.hibernateTemplate

        .convertHibernateAccessException(hibernateEx);

  }

} parameter bound
in pcut expression
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@Repository

� This exception translation is  available "out of the box" 

in Spring 2.0 and above

� Simply annotate repository / dao objects with 

@Repository

� Define the exception translation bean in your 

configuration

• PersistenceExceptionTranslationPostProcessor
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Requirements

✔ the service layer should be transactional

✔ when a Hibernate dao operation fails the exception 
should be translated

➔ a business service that fails with a deadlock 
loser failure can be retried

● service layer objects should not call the web layer
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Retry

�One subtype of DataAccessException is…

• DeadlockLoserDataAccessException

�Deadlock failures are potentially recoverable

• If the operation is idempotent, we can retry it*

�We need a DeadlockLoserRetry aspect…
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Deadlock Loser Recovery

@Aspect
public class DeadlockLoserRetry {
  private static final int DEFAULT_MAX_ATTEMPTS = 3;
  private int maxAttempts = DEFAULT_MAX_ATTEMPTS;

  /** configurable via dependency injection */
  public void setMaxAttempts(int newMax) {
    this.maxAttempts = newMax;
  }

 …
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Deadlock Loser Recovery
 

@Around("idempotentOperation()")
public Object retryDeadlockLosers(ProceedingJoinPoint pjp)
throws Throwable {
  int attempts = 0;
  DeadlockLoserDataAccessException loserEx = null;
  while (attempts++ < maxAttempts) {
    try {
      return pjp.proceed();
    } 
    catch (DeadlockLoserDataAccessException ex) {
      loserEx = ex;
    }
  }
  throw loserEx;
}
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 Schema-based equivalent

<aop:config>

  <aop:aspect ref="deadlockLoserRetry">
     <aop:pointcut id="idempotentOperation"          
         expression= "SystemArchitecture.businessService()"/>

     <aop:around 
           pointcut-ref="idempotentOperation"
           method="doConcurrentOperation"/>
  </aop:aspect>

</aop:config>
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Schema-based Equivalent

<bean id="deadlockLoserRetry"
    class="DeadlockLoserRetry">
    <property name="maxAttempts" value="2"/>
</bean>
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Recap:

� Created an abstraction: idempotentOperation

� Used around advice to retry failing 

idempotentOperations

� Packaged in a ConcurrentOperationExecutor aspect

� Configured using Spring 
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Idempotent operations

� It would be nice if all of our service layer 

operations were idempotent

�But what if some of them aren't?

�We'd need a way to identify and retry only the 

idempotent subset…
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Idempotent operations

 

@Retention(RetentionPolicy.RUNTIME) 
public @interface Idempotent {}
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Idempotent operations

� Just update the abstraction (pointcut 

expression)…

  <aop:pointcut id="idempotentOperation"
        expression=
             "SystemArchitecture.businessService()
              and @annotation(Idempotent)"/>
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Requirements

✔ the service layer should be transactional

✔ when a Hibernate dao operation fails the exception 
should be translated

✔ a business service that fails with a concurrency 
related failure can be retried

➔ service layer objects should not call the web 
layer
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Permitted component interactions
/** … */

public aspect SystemArchitecture {

 …

 /* 

  * no other module should depend on the

  * web tier 

  */

 declare warning

   : callToWebTier() && !inWebTier()

   : "no external dependencies on web tier";

 

  …

} 
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Demo

� Hibernate usage guidelines…
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AOP in Spring 2.5
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Spring 2.5 AOP

�Aspects are defined in Spring configuration file

• supports both XML based definition

• and @AspectJ aspects

�XML defined aspects are backed by regular 

classes 
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Spring 2.5 and AspectJ

� Spring and AspectJ are still distinct projects

� Spring just uses the AspectJ pointcut parsing and 

matching APIs

• using AspectJ as a library, not as a weaving engine

� Gives the same syntax and semantics across Spring 

AOP and AspectJ

• perfect if you are going to use both

• or start out with Spring AOP, and then want to introduce 

AspectJ at some point
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New in Spring 2.5

• bean()
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New in Spring 2.5

• <context:load-time-weaver/>

– aspectj-weaving="on|off|autodetect"
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Summary
�We want to implement enterprise requirements in as 

simple and straightforward a manner as possible

• use the appropriate implementation "vocabulary"

� AOP provides the necessary abstractions

� AspectJ and Spring AOP are the leading AOP 

implementations

• tightly integrated

• Can use together or independently



Questions?


