
Concurrency: Past and
PresentPresent

Implications for Java Developers

Brian Goetz

Senior Staff Engineer, Sun Microsystems

brian.goetz@sun.com

About the speaker

• Professional software developer for 20 years
> Sr. Staff Engineer at Sun Microsystems

• Author of Java Concurrency in Practice
> Author of over 75 articles on Java development

See > See http://www.briangoetz.com/pubs.html

• Member of several JCP Expert Groups
• Frequent presenter at major conferences

What I think...

Concurrency is hard.

...but don't just take my word for it

• “Unnatural, error-prone, and untestable”
> R.K. Treiber, Coping with Parallelism, 1986

• “Too hard for most programmers to use”
> Osterhout, Why Threads are a Bad Idea, 1995

• “It is widely acknowledged that concurrent
programming is difficult”
> Edward Lee, The Problem with Threads, 2006

...but don't take their word for it

• Adding concurrency control to objects can be harder
than it looks
> Simple model of a bank account, no synchronization

public class Account {
private int balance;

public int getBalance() {
return balance;

}

public void credit(int amount) {
balance += amount;

}

public void debit(int amount) {
balance -= amount;

}
}

Problem: Incorrect synchronization

• The Rule: if mutable data is shared between
threads, all accesses require synchronization
> Failing to follow The Rule is called a data race

> Computations involving data races have exceptionally
subtle semantics under the Java Language Specificationsubtle semantics under the Java Language Specification

> (that's bad)
>Code calling Account.credit() could write the wrong value

> Code calling Account.getBalance() could read the wrong
value

Adding synchronization

• Need thread safety? Just synchronize, right?
> It's a good start, anyway

@ThreadSafe public class Account {
@GuardedBy(“this”) private int balance;

public synchronized int getBalance() {
return balance;return balance;

}

public synchronized void credit(int amount) {
balance += amount;

}

public synchronized void debit(int amount) {
balance -= amount;

}
}

Composing operations

• Say we want to transfer funds between accounts
> But only if there's enough money in the account

• We can create a compound operation over multiple
Accounts

public class AccountManager {
public static void transferMoney(Account from,

Account to,
int amount)

throws InsufficientBalanceException {

if (from.getBalance() < amount)
throw new InsufficientBalanceException(...);

from.debit(amount);
to.credit(amount);

}
}

Problem: race conditions

• A race condition is when the correctness of a
computation depends on “lucky timing”
> Often caused by atomicity failures

• Atomicity failures occur when an operation should
be atomic, but is notbe atomic, but is not
> Typical pattern: Check-then-act

if (foo != null) // Another thread could set
foo.doSomething(); // foo to null

> Also: Read-modify-write
++numRequests; // Really three separate actions

// (even if volatile)

Race Conditions

• All data in AccountManager is accessed with
synchronization
> But still has a race condition!

>Can end up with negative balance with some unlucky timing
− Initial balance = 100

− Thread A: transferMoney(me, you, 100);

− Thread B: transferMoney(me, you, 100);

public class AccountManager {
public static void transferMoney(Account from,

Account to,
int amount)

throws InsufficientBalanceException {

// Unsafe check-then-act
if (from.getBalance() < amount)

throw new InsufficientBalanceException(...);
from.debit(amount);
to.credit(amount);

}
}

Demarcating atomic operations

• Programmer must specify atomicity requirements
> We could lock both accounts while we do the transfer

> (Provided we know the locking strategy for Account)

public class AccountManager {
public static void transferMoney(Account from,

Account to, Account to,
int amount)

throws InsufficientBalanceException {

synchronized (from) {
synchronized (to) {

if (from.getBalance() < amount)
throw new InsufficientBalanceException(...);

from.debit(amount);
to.credit(amount);

}
}

}
}

Problem: Deadlock

• Deadlock can occur when multiple threads each
acquire multiple locks in different orders
> Thread A: transferMoney(me, you, 100);

> Thread B: transferMoney(you, me, 50);
public class AccountManager {public class AccountManager {

public static void transferMoney(Account from,
Account to,
int amount)

throws InsufficientBalanceException {

synchronized (from) {
synchronized (to) {

if (from.getBalance() < amount)
throw new InsufficientBalanceException(...);

from.debit(amount);
to.credit(amount);

}
}

}
}

Avoiding Deadlock

• We can avoid deadlock by inducing a lock ordering
public class AccountManager {

public static void transferMoney(Account from,
Account to,
int amount)

throws InsufficientBalanceException {

Account first, second;
if (from.getAccountNumber() < to.getAccountNumber()) {if (from.getAccountNumber() < to.getAccountNumber()) {

first = from; second = to;
}
else {

first = to; second = from;
}

synchronized (first) {
synchronized (second) {

if (from.getBalance() < amount)

throw new InsufficientBalanceException(...);
from.debit(amount);
to.credit(amount);

}
}

}
}

That was hard!

• We started with a very simple account class
> At every step, the “obvious” attempts at making it thread-
safe had some sort of problem

> Some of these problems were subtle and nonobvious

> And this was a trivial class!> And this was a trivial class!
> Tools didn't help us

> Runtime didn't help us

Why was that so hard?

• There is a fundamental tension between object
oriented design and threads

• OO encourages you to hide implementation details
> Good OO design encourages composition

> But composing thread-safe objects requires knowing > But composing thread-safe objects requires knowing
how they implement locking

> So that you can participate in their locking protocols
> So you can avoid deadlock
> Language hides these as implementation details

• Threads graft concurrent functionality onto a
fundamentally sequential execution model
> Threads == sequential processes with shared state

Why was that so hard?

• Threads seem like a straightforward adaptation of
the sequential model to concurrent systems
> But in reality they introduce significant complexity

>Harder to reason about program behavior
> Loss of determinism> Loss of determinism
>Requires greater care

• Like going from to

Asynchrony, before threads

• Concurrency used to refer to asynchrony
> Signal handlers, interrupt handlers

> Handler interrupts program, finishes quickly, and
resumes control

> Handlers might run in a restricted execution environment> Handlers might run in a restricted execution environment

>Might not be able to allocate memory or call some library code

• Primary motivation was to support asynchronous IO
> Multiple IOs meant multiple interrupts – hard to write!

> Data accessed by both interrupt handlers and foreground
program required careful coordination

Asynchrony, before threads

• Consider an asynchronous account interface
> Provides asynchronous get- and set-balance operations

> (code sketch using Java syntax)
public class Accounts {

public class AccountResult {
public Account account;public Account account;
public int balance;

}

public interface GetBalCallback {
public void callback(Object context, AccountResult result);

}

public interface SetBalCallback {
public void callback(Object context, AccountResult result);

}

public static void getBalance (Account acct,
Object context,
GetBalCallback callback) { ... }

public static void setBalance (Account acct, int balance,
Object context,
SetBalCallback callback) { ... }

}

Asynchrony, before threads

• How to build a balance-transfer operation?
> A compound operation with four steps

>Get from-balance, get to-balance, decrease from-balance,
increase to-balance

> Each step is an asynchronous operation> Each step is an asynchronous operation

> The callback of the first step stashes the result for later use
− And then initiates the second step

− And so on

− Callback of the last step triggers callback for the compound operation

public class AccountTransfer {
public interface TransferCallback {

public void callback(Object context, TransferResult result);
}

public void transfer (Account from, Account to, int amount,
Object context, TransferCallback callback) {...}

}

Asynchrony, before threads

• The code for the transfer operation in C could be
200 lines of hard-to-read code!
> 95% is “plumbing” for the async stuff

> Error-prone coding approach

>Coding errors show up as operations that never complete>Coding errors show up as operations that never complete
> Prone to memory leaks
> Prone to cut and paste errors

> Hard to debug

> Error handling made things even harder

Threads to the “rescue”

• Threads promised to turn these complex
asynchronous program flows into synchronous ones
> Now the whole control flow can be in one place

>Code got much smaller, easier to read, less error-prone
> A huge step forward – mostly> A huge step forward – mostly

> Except for that pesky shared-state problem
public class Accounts {

// blue indicates blocking operations
public static int getBalance (Account acct) { ... }
public static void setBalance (Account acct, int balance) { ... }

public void transfer (Account from, Account to, int amount) {
int fromBal = getBalance (from);
int toBal = getBalance (to);
setBalance (from, fromBal - amount);
setBalance (to, toBal + amount);

}
}

Threads for parallelism

• Threads were originally used to simplify asynchrony
> MP machines were rare and expensive

• But threads also offer a promising means to exploit
hardware parallelism
> Important, because parallelism is everywhere today> Important, because parallelism is everywhere today

> On a 100-CPU box, a sequential program sees only 1%
of the CPU cycles

Hardware trends

• Clock speeds maxed out in
2003

• But Moore's Law continues

> Giving us more cores
instead of faster coresinstead of faster cores

• Result: many more
programmers become
concurrent programmers
(maybe reluctantly)

Data © 2005 H. Sutter, “The Free Lunch is Over”

What are the alternatives?

• Threads are just one concurrency model
> Threads are sequential processes that share memory

> Any program state can change at any time

> Programmer must prevent unwanted interactions

• There are other models too (Actors, CSP, BSP, • There are other models too (Actors, CSP, BSP,
staged programming, declarative concurrency, etc)
> May limit what state can change

> May limit when state can change

• Limiting the timing or scope of state changes
reduces unpredictable interactions

• Can improve our code by learning from other models

What are the alternatives?

• The rule in Java is
> Hold locks when accessing shared, mutable state

> Hold locks for duration of atomic operations

• Managing locking is difficult and error-prone
• The alternatives are

> Don't mutate state

> Eliminates need for coordination
> Don't share state

> Isolates effect of state changes
> Share state only at well-defined points

>Make the timing of concurrent modifications explicit

Prohibit mutation: functional languages

• Functional languages (e.g., Haskell, ML) outlaw
mutable state
> Variables are assigned values when they are declared,
which never change

> Expressions produce a value, but have no side effects> Expressions produce a value, but have no side effects

• No mutable state → no need for synchronization!
> No races, synchronization errors, atomicity failures

• No synchronization → no deadlock!

Applying it to Java: prefer immutability

• You can write immutable objects in Java
> And you should!

> Functional data structures can be efficient too

• Immutable objects are automatically thread-safe
And easier to reason about> And easier to reason about

> And safer

> And scale better

• Limit mutability as much as you can get away with
> The less mutable state, the better

> Enforce immutability if possible

> Final is the new private!

Explicit concurrency: message passing

• With message-passing, mutable state is private to
an activity
> Interface to that activity is via messages

> If you want to read it, ask them for the value

> If you want to modify it, ask them to do it for you> If you want to modify it, ask them to do it for you

• This makes the concurrency explicit
> Apart from send/receive, all code behaves sequentially

Erlang: functional + message passing

• Everything is an Actor (analogous to threads)
• Actors have an address, and can

> Send messages to other Actors

> Create new Actors

Designate behavior for when a message is received> Designate behavior for when a message is received

• Concurrency is explicit – send or receive messages
> No shared state!

• Used in telephone switches
> 100KLoc, less than 3m/year downtime

Example: a simple counter in Erlang

• State in Erlang is local to an Actor
> Each counter is an Actor, who owns the count

> Clients send either “increment” or “get value” messages
increment(Counter) ->

Counter ! increment. %Send “increment” to Counter actor

value(Counter) ->
Counter ! {self(),value}, %Send (my address, “value ”) tuple
receive %Wait for reply

{Counter,Value} -> Value
end.

%% The counter loop.
loop(Val) ->

receive
increment -> loop(Val + 1);
{From,value} -> From ! {self(),Val}, loop(Val);
Other -> loop(Val) % All other messages

end.

• No shared or mutable state!

Actors in Scala

• Scala is an object-functional hybrid for the JVM
> Similar in spirit to F# for .NET

> Scala also supports an Actor model
class OnePlaceBuffer {

private val m = new MailBox // An internal mailbox
private case class Empty, Full(x: Int) // Msg typesprivate case class Empty, Full(x: Int) // Msg types
m send Empty // Initialization
def write(x: Int)

{ m receive { case Empty => m send Full(x) } }
def read: Int = m receive {

case Full(x) => m send Empty; x
}

}

> Uses partial functions to select messages

Single mutation: the declarative model

• Functional languages have only bind, not assign
• The declarative concurrency model relaxes this
somewhat to provide dataflow variables
> Single-assignment (write-once) variables

>Can either be unassigned or assigned>Can either be unassigned or assigned
− Only state transition is undefined → defined

> Assigning more than once is an error
>Reads to unassigned variables block until a value is assigned

• Nice: all possible executions with a given set of
inputs have equivalent results
> No races, locking, deadlocks

• Can be implemented in Java using Future classes

Responsible concurrency

• I don't expect people are going to ditch Java in favor
of CSP, Erlang, or other models any time soon

• But we can try to restore predictability by limiting the
nondeterminism of threads
> Limit concurrent interactions to well-defined points> Limit concurrent interactions to well-defined points

> Encapsulate code that accesses shared state in frameworks
> Limit shared data

>Consider copying data instead of sharing it
> Limit mutability

• Each of these reduces risk of unwanted interactions
> Moves us closer to restoring determinism

Recommendations

• Concurrency is hard, so minimize the amount of
code that has to deal with concurrency
> Isolate concurrency in concurrent components such as
blocking queues

> Isolate code that accesses shared state in frameworks> Isolate code that accesses shared state in frameworks

• Use immutable objects wherever you can
> Immutable objects are automatically thread safe

> If you can't eliminate all mutable state, eliminate as much
as you can

• Sometimes it's cheaper to share a non-thread-safe
object by copying than to make it thread-safe

Development to watch:
Software Transactional Memory (STM)
• Most promising approach for integrating with Java

> Not here yet, waiting for research improvements

• Replace explicit locks with transaction boundaries
atomic {

from.credit(amount);
to.debit(amount); to.debit(amount);

}

> Explicit locking causes problems if locking granularity
doesn't match data access granularity

> Let platform figure out what state is accessed and
choose the locking strategy

> No deadlock risk

>Conflicts can be detected and rolled back
> Transactions compose naturally!

Concurrency: Past and
PresentPresent

Implications for Java Developers

Brian Goetz

Senior Staff Engineer, Sun Microsystems

brian.goetz@sun.com

