
© 2007 LinkedIn corp.

Linked frastructure
QCON 2007

Jean-Luc Vaillant, CTO & Co-founder

© 2007 LinkedIn corp.

Disclaimer: I will NOT talk about...

• Communication System

• Network Update Feed

• Authentication

• Security

• Payment

• Tracking

• Advertising

• Media Store

• Monitoring

• Load Balancing

• etc

© 2007 LinkedIn corp.

Quick Facts about LinkedIn

• Founded end of 2002, based in Mountain View

• Website opened to the public in May 2003

• Membership:

• 16M members, > 1M new members per month

• 50% membership outside the US

• > 30% users active monthly

• Business:

• Profitable since 2006

• 180 employees (and yes, we’re hiring!)

3

© 2007 LinkedIn corp.

Technical stack

• Java! (a bit of Ruby and C++)

• Unix: production is Solaris (mostly x86), development on OS X

• Oracle 10g for critical DBs, some MySQL

• Spring

• ActiveMQ

• Tomcat & Jetty

• Lucene

4

© 2007 LinkedIn corp.

The “big idea”...

• Professional centric social network

• Using relationships and degree distance to:

• improve connect-ability

• improve relevance

• enhance sense of reputation

• “Your world is NOT flat”, relationships matter!

5

© 2007 LinkedIn corp.

The “big idea” (cont)

6

Data

Data

Data

Data

Data

Graph of Relationships

More effective results !

© 2007 LinkedIn corp.

Just a little problem...

• Typical graph functions:

• visit all members within N degrees from me

• visit all members that appeared within N degrees from me since timestamp

• compute distance and paths between 2 members

• Graph computations do not perform very well in a relational DB :-(

• Only way to get the performance needed is to run the algorithms on data
stored in RAM!

7

© 2007 LinkedIn corp.

Just a little problem...

Connections

int

int

from_member_id

to_member_id

DB

Graph Engine

RAM

Graph Engine

RAM

Graph Engine

RAM

...

Application Application Application Application

insert / delete

connections optio
n 1

option 2

Q: how do we keep the RAM DB in sync
at ALL times?

8

© 2007 LinkedIn corp.

Sync option 1

• Application updates DB and informs graph engines of the change...

• direct RPC:

db.addConnection(m1,m2);
foreach (graphEngine in GraphEngineList) {

graphEngine.addConnection(m1,m2);
}

• reliable multicast: better but system is very sensitive to network topology,
latency and availability

• JMS topic with durable subscription
• messaging system becomes second POF
• provisioning new clients becomes much more painful

• if application “forgets” to send the second notification we’re in BIG trouble

• Fairly “typical” 2 phase commit problem :-(

9

© 2007 LinkedIn corp.

Sync option 2

• Application updates DB (as usual) and graph engines manage to replicate the
changes made in the DB

• Provides isolation of concerns

• Technology exists, it’s called DB replication

• There is a catch, it’s proprietary, opaque (Oracle) and works DB to DB only

• We need a “user space” replication...

10

© 2007 LinkedIn corp.

Ideal “Databus”

• Does not miss ANY event

• Does not add any new point of failure

• Scales well

• Works over high latency networks

• Does not assume that clients have 100% uptime.
Client must be able to catch up when it is back online.

• Easy to add new clients

• Easy to use on the application side

• Easy to set up on the DB side

11

© 2007 LinkedIn corp.

First attempt... using timestamps

12

Connections

int

int

boolean

timestamp

from_member_id

to_member_id

is_active

last_modified

DBApplication

insert / update
connections getChangesSince(timestamp)

Graph Engine

RAM

lastTimeStamp

trigger on insert/update sets timestamp = SysTimeStamp

© 2007 LinkedIn corp.

Works pretty well...

• DB provides full ACID behavior, no additional transaction needed

• Adding trigger and column is straightforward

• Performance on DB not seriously affected

• Client clock is not a factor

• Fairly easy for client to connect and get the event stream

13

© 2007 LinkedIn corp.

A big problem though...

• Timestamps (in Oracle) are set at the time of the call, NOT at the time of
commit

14

time

systimestamp

commit

tx2
systimestamp

commit

t1

t2

tx1
• tx2 commits BEFORE tx1 but t2 > t1

• if sync occurs between the 2 commits
lastTimeStamp is t2 and tx1 is missed!

• Workaround (ugly): reread events since
lastTimeStamp - n seconds

• Any locking and we can still miss an event

© 2007 LinkedIn corp.

Second attempt... ora_rowscn

• little known feature introduced in Oracle 10g

• the ora_rowscn pseudo column contains the internal Oracle clock (SCN -
System Change Number) at COMMIT time!

• by default, the ora_rowscn is block-level granularity

• to get row-level granularity: create table T rowdependencies ...

• SCN always advances, never goes back!

• no performance impact (that we could tell)

• little catch: cannot be indexed !

15

© 2007 LinkedIn corp.

Indexing ora_rowscn?

• add an indexed column: scn

• set default value for scn to “infinity”

• after commit ora_rowscn is set

• select * from T where scn > :1 AND ora_rowscn > :1

• every so often, update T set scn = ora_rowscn where scn = infinity

16

© 2007 LinkedIn corp.

Using ora_rowscn (cont)

17

Connections

int
int
boolean
int (indexed)
virtual

from_member_id

to_member_id

is_active

scn

ora_rowscn

DBApplication

insert / update
connections

getCxChangesSince(scn)

Graph Engine

RAM

lastScn

ora_rowscn to scn

"indexer"

© 2007 LinkedIn corp.

Supporting more tables/events

18

Now we have a single log for all the tables that we want to track

Connections
int
int
boolean
int

from_member_id

to_member_id

is_active

txn

DBApplication

insert / update
connections

getChangesSince(scn)

Graph Engine

RAM

lastScn

TxLog
int
int (indexed)
timestamp
int
virtual

txn

scn

ts

mask

ora_rowscn

trigger on insert/update allocates txn from sequence
and inserts into TxLog

© 2007 LinkedIn corp.

Many tables, many clients..

19

- adding a new “databusified” table is (fairly) easy
- clients can track many tables at once
- transactions involving many tables are supported

DBApplication

insert / update
getChangesSince(table[],scn)

Connections

Profiles

Members

Groups

Jobs

Graph Engine

People Search

Jobs Search

Ask Your Network

Search

Experts Search

...

...

TxLog

© 2007 LinkedIn corp.

Ideal “Databus” ?

• Does not miss ANY event

• Does not add any new point of failure

• Scales well?

• Works over high latency networks

• Does not assume all clients to be 100%

• Easy to add new clients

• Easy to use on the application side

• Easy to set up on the DB side

20

© 2007 LinkedIn corp.

Scaling?

21

Adding a lot of clients will eventually kill
my databases

DB

Graph Engine

Graph Engine

Graph Engine

Graph Engine

People Search

People Search

Jobs Search
Lots of SQL connections !
Does not scale too well !

© 2007 LinkedIn corp.

Scaling!

22

DB

Graph Engine

Graph Engine

Graph Engine

Graph Engine

People Search

People Search

Jobs Search

Relay

Event

Buffer

HTTP stateless GETs...

single

DB

thread

http

server

Wr Rd

- only a few DB clients (for HA)
- hundreds of clients load balanced over HTTP
- relays can be cascaded (within reason)
- clients do not talk to DB at all!

© 2007 LinkedIn corp.

Additional applications...

• Cache invalidation

23

Master
DB

TxLog

Data Access Layer

consistent?yes

Reader

result = cache.get(key);

if result is null {

 result = db.get(key);

 if (result not null)

 cache.add(key,result);

}

return result;

Apply Thread

loop:

 get updates from Master DB

 foreach (key,value) {

 cache.clear(key);

 }

no

Cache

. can be large

. infinite TTL

RPC

events

consistent = write operations or any subsequent read within N seconds...

note: N can be dynamically computed and adjusted for latency

© 2007 LinkedIn corp.

Combination caching & replication

• Even better, if cache is empty, fill it up from a LOCAL replica

24

Master
DB

TxLog
Replica

DB

lastScn

Data Access Layer

consistent?yes

Reader

result = cache.get(key);

if result is null {

 result = repdb.get(key);

 if (result not null)

 cache.add(key,result);

}

return result;

Apply Thread

loop:

 get updates from Master DB

 foreach (key,value) {

 repdb.put(key,value);

 cache.set(key,value);

 }

no
Cache

. optional

. can be large

. infinite TTL

RPC

events

Some race conditions exists, details for dealing with them are omitted

© 2007 LinkedIn corp.

Specialized indices

• bulk lookups: “which of these 800 contacts in my address book is a member?”

• spatial indices...

• partial indices for time relevant data (most recent, short lived data)

25

DB

TxLog

Apply Thread

Specialized Index
(RAM)

© 2007 LinkedIn corp.

The overall view...

26

DBs

Applications

TxLog

Relays (capture)

Apply Thread

Graph

Engines

Apply Thread

Lucene

Search

Engines

Databus Relays

JDBC

Apply Thread

Replica

DBs

Caches

Apply Thread

Custom

Indices

HTTP

RPC

(mostly for HA)

© 2007 LinkedIn corp.

Vendor lock-in?

• Our capture code is indeed Oracle specific but...

• All we need from the DB is

• having a unique ID per transaction (txn). No ordering required, just unicity

• having ONE table with a non indexable “SCN”

• serializable transactions

• (optional) alert mechanism (cond.signal())

27

© 2007 LinkedIn corp.

Databus summary

• it is NOT a messaging system, it only provides the last state of an object

• it is NOT a caching system or datastore, it provides changes "since a point in
time", not "by key"

• it will provide 100% consistency between systems... eventually...

• no additional SPOF: it’s you commit to the DB, it will be available on the bus

• moves replication benefits out of the DBA land into the application space

• very limited support from the DBMS required

• plugging in the Databus from a SWE POV is as simple as wiring a Spring
component and writing an event handler...

• allows for a full range of data management schemes if the data is mostly read

28

© 2007 LinkedIn corp.

Back to the Graph Engine...

29

Storage Mgr

Aggregator

Local

Disk

D
a
t
a
b
u
s

R
P
C

S
e
r
v
e
r

getDistance(m1,m2)

filterAndSort(m,degree,[mbrs,data])

getNetwork(m,degree,ts)

Connections
Store

Groups
Store

Visitor Visitor

scn

© 2007 LinkedIn corp.

Algorithms

• visitor pattern within a “Read Transaction”, standard Breadth First

• a little fancier for visitNewSince(TimeStamp ts) if you want to avoid traversing
the graph twice

• use symmetry when possible

30

2

1

2

1

much cheaper than

4

3

2

1

3

2

1

© 2007 LinkedIn corp.

First challenge: Read Write Lock gotchas

• Wikipedia:

A read/write lock pattern is a software design pattern that allows concurrent read access to an object but
requires exclusive access for write operations. In this pattern, multiple readers can read the data in parallel but
needs exclusive lock while writing the data. When writer is writing the data, readers will be blocked until writer is
finished writing.

• Sounds like a great locking mechanism for any structure with a LOT of reads
and a FEW tiny (serializable) writes...

• Graph index is one of these...

• So why do we observe?

• CPU caps way under 100%

• Graph RPC calls take much longer than expected

31

http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29

© 2007 LinkedIn corp.

Read Write Lock gotchas

32

400 ms

100 ms

5 ms

W R2 R3R1

R2 is delayed by nearly 400 ms for a 5 ms call!

Problem occurs when some readers take significant time...

© 2007 LinkedIn corp.

Read Write Lock gotchas

• Solution: don’t use RW lock, use Copy On Write...

33

1

2 3 4

root

Reader 1
root

Reader 2

1'

2 3 4' 5

Writer

add node 5

dup node 4 and 1

switch root

wait for previous readers to finish

free nodes 1 and 4

© 2007 LinkedIn corp.

Second challenge: one’s network size...

• Graph of connections is highly skewed: yet another power law...

• Heavy connectors “attract” each other which leads to a “black hole” effect

• Once you introduce distance > 1 the network size grows very fast !

• Compressing can flatten that curve considerably...

34

3

2

1

3

2
1

compress and

partition

Network artifact is now:

- cacheable
- transportable over the network
- whole, per degree, per “chunk”

© 2007 LinkedIn corp.

With caching

35

Graph Computing Engine

3

2
1

compressed

Network Cache

3
21

3
21

3
213

21
maintains compressed network

of logged in users

Search

A

B

A: send ids for filtering and distance

B: ask for ids within distance + within id range

• cache is maintained compressed

• compression is designed so visits, lookup and partial fetches are fast!

• network can be shipped to other systems for additional relevance

© 2007 LinkedIn corp.

Summary

• Databus infrastructure useful for....

• maintaining indices more efficiently than in a std relational DB

• Graph of relationships beyond first degree

• Text based indices (Lucene)

• splitting data persistence from read queries

• use DB mainly for storing data and maintaining TxLog

• use RAM for processing/querying the data

• keeping distributed caches in sync with Master DBs

36

© 2007 LinkedIn corp.

Q & A

37

