Q) GIGASPACES |
Scale-out your Tier-Based
WRITE ONCE. Systems in 3 steps Using
SCALE ANYWHERE. Spring

Nati Shalom

Agenda

» Drivers for scalability

« Tier based approach and its inherent bottlenecks

* A three-steps approach for achieving scalability

e Transparent migration using Spring-based abstractions
 Comparing both approaches

e Summary

WRITE ONCE. o S
6 GIGASPACES SCALE ANYWHERE. © Copyright 2006 Gig

The Business and Technology Drivers

* Business driver. Must process an increasing volume of information faster in a
global marketplace

 Technology challenge: Need a cost-effective solution to scale distributed
applications easily while maintaining high performance and resiliency

()
Capital Markets:

_Algorithmic trading Market Data Risk Analysis Portfolio Analysis Surveillance/Compliance |

7)
Telecom:

_ Real-time billing, Order Management, VOIP, Location-based services, Mobile device content |

4)
On-Line:

_Gaming, Travel, Advertising/Marketing, Commerce, Consumer portals, Search engines

.

7)
Defense

_Real-time intelligence, Pattern Analysis)

WRITE ONCE. - _ . ! . i ry T
Q GIGASPACES SCALE ANYWHERE. © Copyright 2006 GigaSpaces Technologies, Ltd. All Rights Reserve

A Transaction Flow Example - Order Management

@ Validate

© Check/match

@ Execute order
Notify

Completion

. A —
. —
mit -’E‘ =

o C
/ ’ | Register
Perform
: “T: . —_ | Query

XMany network hops

| e——) |

XHigh latency

Messaging

Infrastructure

WRITE ONCE.
Q OO e o N N S GAYE ANYWHERE.

Maintaining Resiliency in a Traditional Tiered Application

/= E. (V) validate
@ © ® © Check/match

@ Execute order
gy gy gy

Daté

N feed \

X Separate failover strategy
and implementation for
each tier

AR N ARN

X |ntegration points are not Data

addressed

XRedundancy increase
network traffic

Tier

Messaging

Infrastructure

Infrastructure

Messaging

Back-up

X[atency is increased

WRITE ONGE.
Q) GIGASEACES | goALE ANVWHERE.

Scaling and Managing a Traditional Tiered Application

X Scalability is not linear

Business tier
X Scalability management

nightmare

WRITE ONCE.
Q B S i ‘ SCALE ANYWHERE.

e TR
Simple Scale-out of a Tiered Application in 3 Steps

1. Reduce I/O Bottleneck using an In-Memory Data Grid
— Bring data in-memory
— Improve performance
— Persistency As A Service — persist only for compliance & reporting purposes

2. Consolidate the ESB and Data
— Address data affinity between the messaging infrastructure and the data tier
— Reduce the number of moving parts
— Single cluster — reduce redundancy

3. Assemble the business logic together with the data and messaging
— Create a single, efficient process to scale your application
— Ensure a single built-in failover/redundancy investment strategy

— Simplify the process of scaling and deployment

WRITE ONCE. - . |
6 GIGASPALCES SCALE ANYWHERE. © Copyright 2006 GigaSpaces Technologies, Lid. A

L e
Step 1.
Reduce I/O Bottleneck using In-Memory-Data Grid

@ Validate

© Check/match

@ Execute order

Data ~ .
s »feed In-Memory Data Grid -~ .

-

v’ Reduce latency - Bring data in-
memory EE
\/ =
Improve performance & &
if
v Persistency As A Service

WRITE ONCE. ol
Q GIGASPACES SCALE ANYWHERE. © Copyright 2006 G

Persistency As a Service

* Moving the database to the backend
— In-Memory Data Grid is used as the front-end data store
— Synchronization with the database is done in the background
— Reliable asynchronous replication is used to ensure no data-loss
— Hibernate can be used to provide transparent mapping

GigaSpaces

WRITE ONGE.
Q) GIGASEACES | goALE ANVWHERE.

L
Step 2.
Consolidate the ESB and Data Together

@ Validate

© Check/match

@ Execute order

Data
< gzfeed

——————

Jing and data

| moving parts

\/Single clus e redundancy

WRITE ONCE.
Q S O O | N S GALE ANYWHERE.

-
Step 3.
Assemble the Business Logic, Data, and Messaging

@ Validate

© Check/match

@ Execute order

Buxiresggednit
.
Data B H)
S

\ 2 feed v/Single model for:

——————

\/Design
\/Development
\/Testing
\/Implementation
\/Deployment
\/Management

v'No integration effort

WRITE ONCE.
Q S O O | N S GALE ANYWHERE.

Putting it all together..

@ Validate

© Check/match

Submit

@ Execute order
Order

_— e mm mm = ==

Processing Unit

Validate -~ N
Check
Notify Perform Query
Completion Execute Order

v : _ _ _ Persist for Compliance &
Collocation of all tiers enables transactions to occur in process

Reporting purposes:
with minimal network hops P g purp
v/ Minimum latency and maximum throughput - Storing State
- Register Orders

v Unparalleled End-To-End Transaction Performance - etc.

QB'EASF’AUES WRITE ONCE.

SCALE ANYWHERE.

SLA Driven Deployment

SLA Driven
Container

Management &
Monitoring
Consala

Processing Unit / _

\/Single, built-in failover/redundancy investment strategy

v Fewer integration points mean fewer of failure

v/ Automated SLA driven failover/redundancy mechanism

v/Continuous Availability

WRITE ONCE.
Q OO e o N N S GAYE ANYWHERE.

Scaling made simple!

Management &
Monitoring
Console

\/Single, efficient process to scale your application

v'Linear scalability

\/Automated, SLA-Driven deployment and management

- Scaling policy, System requirements, Space cluster
topology

WRITE ONCE.
Q OO e o N N S GAYE ANYWHERE.

L

SBA - Space Based Architecture

 What is Space Based Architecture?
— A holistic architecture for scaling out stateful applications
— Provides details on how to combine the three steps in the most optimal manner
— Can be implemented in various ways and products:

« Using Combinations of products — Messaging, Distributed Caching and
integrate them together.

» Using single virtual implementation for all of the above:
— This is currently supported by GigaSpaces
— Google refers to a similar model called “Cloud Computing”
— Other vendors seem to follow that direction: Amazon EC2, eBay, etc.

 See Wikipedia for further details:

— http://en.wikipedia.org/wiki/Space based architecture

WRITE ONCE. AL .
Q)E’GAS FACES | SCALE ANYWHERE. ® Copyright 2006 GigaSpaces Technalogie:

http://en.wikipedia.org/wiki/Space_based_architecture

Transparent Transition to SBA using Spring

e Spring abstraction is a good starting point for separation between the applications
code and the underlying runtime middleware through the use of abstractions:
— Abstract the Data Tier
« DAO

— Abstraction from the underlying data implementation (database or another caching solution)
* Declarative transaction

— Abstract the transaction semantics from our code
— Abstract the Messaging Tier
 JMS Facade
* Remoting
* Event handlers
— Abstract the deployment, configuration and packaging
» Use of XML namespace enable simple extension of the existing configuration
* OSQGI provides packaging and deployment model tuned for high performance SOA

WRITE ONCE. Wl S
6 GIGASPACES SCALE ANYWHERE. @ Copyright 2006 GigaSpaces Technologies, Lid. All Rights Re

L

How seamless the transition to SBA can be?

* Applications written with the mentioned abstractions can easily migrate to
the new model; those that don’t will require development effort.
* Not every application can be transformed to the new model
— The majority of applications can handle stepl1-2
— Step 3 relies on partitioning, which may require re-architecture/design.

WRITE ONCE. D
6 GIGASPACES SCALE ANYWHERE. @ Copyright 2006 Git

Comparing SBA and TBA

Reference Application

Main Requirements:
-Hot failover — no data loss

-Full consistency

Measures:
-Latency
-Scalability
Feeder Output
Throughput Throughput

WRITE ONCE.
QE'EASPAGES SCALE ANYWHERE.

Implementation
Tier Based Implementation Space Based Implementation

Space Based Architecture verius Thers Based Anchitecture: SBA WorkFlow

Space Based Architecbune wersus Tiers Bated Architectune: TEA WorkFlow

WRITE ONCE.
Q)B'EASPACES SCALE ANYWHERE.

SBA vs. TBA: Context

 Development approach
— 2teams; SBA & TBA
— Native approach for each TBA product
» Leading application server and a caching vendor
— TBA team had more than one product expert

WRITE ONCE.
Q OO e o N N S GAYE ANYWHERE.

Learning curve

SBA vs. TBA learning curve

20
18
16
14
12
10

Time {Days)

o N B O O

TBA
SBA

Installatlon Very Basle Usage Baslcusage Middle lavel Appllcation
usage Deslgn/concepts

Knowledge level

WRITE ONCE. & Conuraht 00E fins
Q‘) GIGASPACES SCALE ANYWHERE.. © Copyright 2006 GigaS

Latency measurement

TBA Latency SBA Latency
3500000 338@0 _ 1930 140000 | 100
3000000 - — o 120000 123656 | :g
7 2500000 - 70 — 100000 - =- / 70
i s, E i —
< 2000000 | @44 g0 < 80000 - 60 =
g yd - 50 ;’ g / 50 5
§ 1500000 s K 5 o000 w0 B
3 1000000 ﬁé?ﬂ - 30 - 40000 - / - 30
- 20 - 20
500000 20000
127 fé45 r 10 1 3 1 (10
0 n T T T T T T T 0 ﬂ I “' '.' 21 T u
0 4 8 12 16 20 24 28 32 38 0 1 2 3 4 5
Number of Feeders Number of Feeders
=¢=Latency CPU usage == Latency CPUusage

6 GIGASPACES EBR:LEETNCE\;‘JHEHE. © Copyright 2006 Giga

Results - Feeding scalability

SBA Scalability TBA Scalability
3000 - 100 200 100
- 2500 80 160 / 80
5 g 2000 o ER:
2 60 X 2§ 120 60 =
o @ 1500 =) o 9 =
g S 40 o S5 [a
2 S 1000 O °S% 80 40 5
= EF
500 120 0 20
0 | | | 0 0 -~ D
1 2 3 4 1234567 8910111213141516
Feeders Quantity Feeders Quantity
SBA Throughput SBA CPU ——TBA Throughput —— TBA CPU

Q GIGASPACES .gg ll’lEETNC\I'E\;‘J'HEHE. © Copyright 2006 GigaSp

TBA Results Analysis

* Queues persistency
— High availability is required for the messaging tiers
— Test without persistency enabled is 4 times faster
— Requires specific HW for ensuring no data-loss.
« Distributed transactions
— Required to ensure no message-loss between the tiers
— Tests without transactions is 4 and 5 times faster.
« Additional network calls due to lack of consistent data affinity

— As the workflow and the cache layer are in separate tiers, network calls occur in
each step in the workflow.

e Conclusion

— Caching can only improve performance and scalability but doesn’'t enable linear
scalability

WRITE ONCE. il
6 GIGASPACES SCALE ANYWHERE. © Copyright 2006 GigaSpa

Summary: Benefits of SBA vs. TBA

Performance
— Eliminate/reduce network hops per business transaction

— Based on in-memory approach

o Scalability
— True End to End linear scalability

 Resilience
— Fewer points of failure (less moving parts)
— Designed for hot fail-over
 Complexity
— Enable agile development (no need to change the code or configuration when moving from a
standalone development to a cluster environment).

« TCO
— Hardware purchases
— Eliminate efforts required to integrate tiers
— Single, built-in failover/redundancy investment and strategy
— Single monitoring and management strategy
— Automated, SLA-Driven deployment and management
— Shorter and more efficient development process

WRITE ONCE. WL
Q GIGASPACES SCALE ANYWHERE. © Copyright 2006 Gi

	Scale-out your Tier-Based Systems in 3 steps Using Spring
	Agenda
	The Business and Technology Drivers
	A Transaction Flow Example - Order Management
	Maintaining Resiliency in a Traditional Tiered Application
	Scaling and Managing a Traditional Tiered Application
	Simple Scale-out of a Tiered Application in 3 Steps
	Step 1: �Reduce I/O Bottleneck using In-Memory-Data Grid
	Persistency As a Service
	Step 2: �Consolidate the ESB and Data Together
	Step 3: �Assemble the Business Logic, Data, and Messaging
	Putting it all together..
	SLA Driven Deployment
	Scaling …. made simple!
	SBA - Space Based Architecture
	Transparent Transition to SBA using Spring
	How seamless the transition to SBA can be?
	Comparing SBA and TBA
	Implementation
	SBA vs. TBA: Context
	Learning curve
	Latency measurement
	Results - Feeding scalability
	TBA Results Analysis
	Summary: Benefits of SBA vs. TBA

