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Agenda

» Drivers for scalability

« Tier based approach and its inherent bottlenecks

* A three-steps approach for achieving scalability

e Transparent migration using Spring-based abstractions
 Comparing both approaches

e Summary
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The Business and Technology Drivers

* Business driver. Must process an increasing volume of information faster in a
global marketplace

 Technology challenge: Need a cost-effective solution to scale distributed
applications easily while maintaining high performance and resiliency

( )
Capital Markets:

_Algorithmic trading Market Data Risk Analysis Portfolio Analysis Surveillance/Compliance |

7 )
Telecom:

_ Real-time billing, Order Management, VOIP, Location-based services, Mobile device content |

4 )
On-Line:

_Gaming, Travel, Advertising/Marketing, Commerce, Consumer portals, Search engines

.

7 )
Defense

_Real-time intelligence, Pattern Analysis )
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A Transaction Flow Example - Order Management
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Maintaining Resiliency in a Traditional Tiered Application

/= E. (V) validate
@ © ® © Check/match

@ Execute order
gy gy gy

Daté

N feed \

X Separate failover strategy
and implementation for
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Scaling and Managing a Traditional Tiered Application

X Scalability is not linear

Business tier
X Scalability management

nightmare

WRITE ONCE.
Q B S i ‘ SCALE ANYWHERE.



e TR
Simple Scale-out of a Tiered Application in 3 Steps

1. Reduce I/O Bottleneck using an In-Memory Data Grid
— Bring data in-memory
— Improve performance
— Persistency As A Service — persist only for compliance & reporting purposes

2. Consolidate the ESB and Data
— Address data affinity between the messaging infrastructure and the data tier
— Reduce the number of moving parts
— Single cluster — reduce redundancy

3. Assemble the business logic together with the data and messaging
— Create a single, efficient process to scale your application
— Ensure a single built-in failover/redundancy investment strategy

— Simplify the process of scaling and deployment
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Step 1.
Reduce I/O Bottleneck using In-Memory-Data Grid

@ Validate

© Check/match

@ Execute order

Data ~ .
s »feed In-Memory Data Grid -~ .

-

v’ Reduce latency - Bring data in-
memory EE
\/ =
Improve performance & &
if
v Persistency As A Service

WRITE ONCE. ol
Q GIGASPACES SCALE ANYWHERE. © Copyright 2006 G




Persistency As a Service

* Moving the database to the backend
— In-Memory Data Grid is used as the front-end data store
— Synchronization with the database is done in the background
— Reliable asynchronous replication is used to ensure no data-loss
— Hibernate can be used to provide transparent mapping

GigaSpaces
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Step 2.
Consolidate the ESB and Data Together

@ Validate

© Check/match

@ Execute order

Data
< gzfeed

——————

Jing and data

| moving parts

\/Single clus e redundancy
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Step 3.
Assemble the Business Logic, Data, and Messaging

@ Validate

© Check/match

@ Execute order

Buxiresggednit
.
Data B H)
S

\ 2 feed v/Single model for:

——————

\/Design
\/Development
\/Testing
\/Implementation
\/Deployment
\/Management

v'No integration effort
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Putting it all together..

@ Validate

© Check/match

Submit

@ Execute order
Order

_— e mm mm = ==

Processing Unit

Validate -~ N
Check
Notify Perform Query
Completion Execute Order

v : _ _ _ Persist for Compliance &
Collocation of all tiers enables transactions to occur in process

Reporting purposes:
with minimal network hops P g purp
v/ Minimum latency and maximum throughput - Storing State
- Register Orders

v Unparalleled End-To-End Transaction Performance - etc.
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SLA Driven Deployment

SLA Driven
Container

Management &
Monitoring
Consala

Processing Unit / _

\/Single, built-in failover/redundancy investment strategy

v Fewer integration points mean fewer of failure

v/ Automated SLA driven failover/redundancy mechanism

v/Continuous Availability
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Scaling .... made simple!

Management &
Monitoring
Console

\/Single, efficient process to scale your application

v'Linear scalability

\/Automated, SLA-Driven deployment and management

- Scaling policy, System requirements, Space cluster
topology
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SBA - Space Based Architecture

 What is Space Based Architecture?
— A holistic architecture for scaling out stateful applications
— Provides details on how to combine the three steps in the most optimal manner
— Can be implemented in various ways and products:

« Using Combinations of products — Messaging, Distributed Caching and
integrate them together.

» Using single virtual implementation for all of the above:
— This is currently supported by GigaSpaces
— Google refers to a similar model called “Cloud Computing”
— Other vendors seem to follow that direction: Amazon EC2, eBay, etc.

 See Wikipedia for further details:

— http://en.wikipedia.org/wiki/Space based architecture
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Transparent Transition to SBA using Spring

e Spring abstraction is a good starting point for separation between the applications
code and the underlying runtime middleware through the use of abstractions:
— Abstract the Data Tier
« DAO

— Abstraction from the underlying data implementation (database or another caching solution)
* Declarative transaction

— Abstract the transaction semantics from our code
— Abstract the Messaging Tier
 JMS Facade
* Remoting
* Event handlers
— Abstract the deployment, configuration and packaging
» Use of XML namespace enable simple extension of the existing configuration
* OSQGI provides packaging and deployment model tuned for high performance SOA
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How seamless the transition to SBA can be?

* Applications written with the mentioned abstractions can easily migrate to
the new model; those that don’t will require development effort.
* Not every application can be transformed to the new model
— The majority of applications can handle stepl1-2
— Step 3 relies on partitioning, which may require re-architecture/design.
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Comparing SBA and TBA

Reference Application

Main Requirements:
-Hot failover — no data loss

-Full consistency

Measures:
-Latency
-Scalability
Feeder Output
Throughput Throughput

WRITE ONCE.
QE'EASPAGES SCALE ANYWHERE.



Implementation
Tier Based Implementation Space Based Implementation

Space Based Architecture verius Thers Based Anchitecture: SBA WorkFlow

Space Based Architecbune wersus Tiers Bated Architectune: TEA WorkFlow
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SBA vs. TBA: Context

 Development approach
— 2teams; SBA & TBA
— Native approach for each TBA product
» Leading application server and a caching vendor
— TBA team had more than one product expert
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Learning curve

SBA vs. TBA learning curve

20
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Installatlon  Very Basle Usage Baslcusage Middle lavel Appllcation
usage Deslgn/concepts

Knowledge level

WRITE ONCE. & Conuraht 00E fins
Q‘) GIGASPACES SCALE ANYWHERE.. © Copyright 2006 GigaS




Latency measurement
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Results - Feeding scalability

SBA Scalability TBA Scalability
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TBA Results Analysis

* Queues persistency
— High availability is required for the messaging tiers
— Test without persistency enabled is 4 times faster
— Requires specific HW for ensuring no data-loss.
« Distributed transactions
— Required to ensure no message-loss between the tiers
— Tests without transactions is 4 and 5 times faster.
« Additional network calls due to lack of consistent data affinity

— As the workflow and the cache layer are in separate tiers, network calls occur in
each step in the workflow.

e Conclusion

— Caching can only improve performance and scalability but doesn’'t enable linear
scalability
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Summary: Benefits of SBA vs. TBA

Performance
— Eliminate/reduce network hops per business transaction

— Based on in-memory approach

o Scalability
— True End to End linear scalability

 Resilience
— Fewer points of failure (less moving parts)
— Designed for hot fail-over
 Complexity
— Enable agile development (no need to change the code or configuration when moving from a
standalone development to a cluster environment).

« TCO
— Hardware purchases
— Eliminate efforts required to integrate tiers
— Single, built-in failover/redundancy investment and strategy
— Single monitoring and management strategy
— Automated, SLA-Driven deployment and management
— Shorter and more efficient development process
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