
Scale-out your Tier-Based
Systems in 3 steps Using
Spring

Nati Shalom

CTO GigaSpaces

Agenda

• Drivers for scalability

• Tier based approach and its inherent bottlenecks

• A three-steps approach for achieving scalability

• Transparent migration using Spring-based abstractions

• Comparing both approaches

• Summary

The Business and Technology Drivers

• Business driver: Must process an increasing volume of information faster in a
global marketplace

• Technology challenge: Need a cost-effective solution to scale distributed
applications easily while maintaining high performance and resiliency

Capital Markets:

Algorithmic trading Market Data Risk Analysis Portfolio Analysis Surveillance/Compliance

Telecom:
Real-time billing, Order Management, VOIP, Location-based services, Mobile device content

Defense
Real-time intelligence, Pattern Analysis

On-Line:
Gaming, Travel, Advertising/Marketing, Commerce, Consumer portals, Search engines

A Transaction Flow Example - Order Management

Validate

Check/match

Execute order

Business tierSubmit

Order Validated

Store
State

V

completedChecked
C

completed

Register

Order

Notify

Completion

Perform

Query

Many network hops

High latency

Maintaining Resiliency in a Traditional Tiered Application

Validate

Check/match

Execute order

Business tier

Back-up

Back-up

Redundancy increase
network traffic

Latency is increased

Separate failover strategy
and implementation for
each tier

Integration points are not
addressed

Scaling and Managing a Traditional Tiered Application

Business tier
Scalability is not linear

Scalability management
nightmare

Back-upBack-up

Back-upBack-up

Simple Scale-out of a Tiered Application in 3 Steps
1. Reduce I/O Bottleneck using an In-Memory Data Grid

– Bring data in-memory

– Improve performance

– Persistency As A Service – persist only for compliance & reporting purposes

2. Consolidate the ESB and Data
– Address data affinity between the messaging infrastructure and the data tier

– Reduce the number of moving parts

– Single cluster – reduce redundancy

3. Assemble the business logic together with the data and messaging
– Create a single, efficient process to scale your application

– Ensure a single built-in failover/redundancy investment strategy

– Simplify the process of scaling and deployment

Step 1:
Reduce I/O Bottleneck using In-Memory-Data Grid

Validate

Check/match

Execute order

In-Memory Data Grid

Reduce latency - Bring data in-
memory

Improve performance

Persistency As A Service

Persistency As a Service

• Moving the database to the backend
– In-Memory Data Grid is used as the front-end data store

– Synchronization with the database is done in the background

– Reliable asynchronous replication is used to ensure no data-loss

– Hibernate can be used to provide transparent mapping

Step 2:
Consolidate the ESB and Data Together

Validate

Check/match

Execute order

Data affinity - messaging and data

Reduce the number of moving parts

Single cluster – reduce redundancy

Step 3:
Assemble the Business Logic, Data, and Messaging

Validate

Check/match

Execute order

Business tierProcessing Unit

Single model for:

Design

Development

Testing

Implementation

Deployment

Management

No integration effort

Processing Unit

Putting it all together..

Validate

Check/match

Execute order

Validate

Check

Perform Query

Execute Order

Submit

Order

Notify

Completion

Persist for Compliance &
Reporting purposes:

- Storing State
- Register Orders
- etc.

Collocation of all tiers enables transactions to occur in process
with minimal network hops

Minimum latency and maximum throughput

Unparalleled End-To-End Transaction Performance

Processing Unit

SLA Driven Deployment

Automated SLA driven failover/redundancy mechanism

Continuous Availability

SLA Driven
Container

Backup

Single, built-in failover/redundancy investment strategy

Fewer integration points mean fewer of failure

Processing Unit

Scaling …. made simple!

BackupBackup

Single, efficient process to scale your application

Linear scalability

Automated, SLA-Driven deployment and management

- Scaling policy, System requirements, Space cluster
topology

SBA - Space Based Architecture

• What is Space Based Architecture?
– A holistic architecture for scaling out stateful applications

– Provides details on how to combine the three steps in the most optimal manner

– Can be implemented in various ways and products:

• Using Combinations of products – Messaging, Distributed Caching and
integrate them together.

• Using single virtual implementation for all of the above:
– This is currently supported by GigaSpaces

– Google refers to a similar model called “Cloud Computing”

– Other vendors seem to follow that direction: Amazon EC2, eBay, etc.

• See Wikipedia for further details:
– http://en.wikipedia.org/wiki/Space_based_architecture

http://en.wikipedia.org/wiki/Space_based_architecture

Transparent Transition to SBA using Spring
• Spring abstraction is a good starting point for separation between the applications

code and the underlying runtime middleware through the use of abstractions:
– Abstract the Data Tier

• DAO
– Abstraction from the underlying data implementation (database or another caching solution)

• Declarative transaction
– Abstract the transaction semantics from our code

– Abstract the Messaging Tier

• JMS Façade

• Remoting

• Event handlers

– Abstract the deployment, configuration and packaging

• Use of XML namespace enable simple extension of the existing configuration

• OSGI provides packaging and deployment model tuned for high performance SOA

How seamless the transition to SBA can be?

• Applications written with the mentioned abstractions can easily migrate to
the new model; those that don’t will require development effort.

• Not every application can be transformed to the new model
– The majority of applications can handle step1-2

– Step 3 relies on partitioning, which may require re-architecture/design.

18

Comparing SBA and TBA

Reference Application

Main Requirements:
-Hot failover – no data loss

-Full consistency

Measures:
-Latency

-Scalability

Implementation

Tier Based Implementation Space Based Implementation

20

SBA vs. TBA: Context

• Development approach
– 2 teams; SBA & TBA

– Native approach for each TBA product

• Leading application server and a caching vendor

– TBA team had more than one product expert

Learning curve

Latency measurement

Results - Feeding scalability

SBA Scalability

0

500

1000

1500

2000

2500

3000

1 2 3 4

Feeders Quantity

Th
ro

ug
hp

ut
,

Tr
ad

es
/s

ec

0

20

40

60

80

100

CP
U,

 %

SBA Throughput SBA CPU

TBA Scalability

0

40

80

120

160

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Feeders Quantity
Th

ro
ug

hp
ut

,
Tr

ad
es

/s
ec

0

20

40

60

80

100

C
P

U,
 %

TBA Throughput TBA CPU

TBA Results Analysis

• Queues persistency
– High availability is required for the messaging tiers

– Test without persistency enabled is 4 times faster
– Requires specific HW for ensuring no data-loss.

• Distributed transactions
– Required to ensure no message-loss between the tiers

– Tests without transactions is 4 and 5 times faster.

• Additional network calls due to lack of consistent data affinity
– As the workflow and the cache layer are in separate tiers, network calls occur in

each step in the workflow.

• Conclusion
– Caching can only improve performance and scalability but doesn’t enable linear

scalability

Summary: Benefits of SBA vs. TBA
• Performance

– Eliminate/reduce network hops per business transaction
– Based on in-memory approach

• Scalability
– True End to End linear scalability

• Resilience
– Fewer points of failure (less moving parts)
– Designed for hot fail-over

• Complexity
– Enable agile development (no need to change the code or configuration when moving from a

standalone development to a cluster environment).

• TCO
– Hardware purchases
– Eliminate efforts required to integrate tiers
– Single, built-in failover/redundancy investment and strategy
– Single monitoring and management strategy
– Automated, SLA-Driven deployment and management
– Shorter and more efficient development process

	Scale-out your Tier-Based Systems in 3 steps Using Spring
	Agenda
	The Business and Technology Drivers
	A Transaction Flow Example - Order Management
	Maintaining Resiliency in a Traditional Tiered Application
	Scaling and Managing a Traditional Tiered Application
	Simple Scale-out of a Tiered Application in 3 Steps
	Step 1: �Reduce I/O Bottleneck using In-Memory-Data Grid
	Persistency As a Service
	Step 2: �Consolidate the ESB and Data Together
	Step 3: �Assemble the Business Logic, Data, and Messaging
	Putting it all together..
	SLA Driven Deployment
	Scaling …. made simple!
	SBA - Space Based Architecture
	Transparent Transition to SBA using Spring
	How seamless the transition to SBA can be?
	Comparing SBA and TBA
	Implementation
	SBA vs. TBA: Context
	Learning curve
	Latency measurement
	Results - Feeding scalability
	TBA Results Analysis
	Summary: Benefits of SBA vs. TBA

