eBay Marketplace Architecture
Architectural Strategies, Patterns, and Forces

Randy Shoup, eBay Distinguished Architect

e ———

QCon SF 2007
November 9, 2007

el

What we’re up against

e

eBay manages ...

Over 248,000,000 registered users
Over 1 Billion photos

per day

eBay users worldwide trade on average
$1812 in goods every second

eBay averages well over 1 billion page views

At any given time, there are over 100 million
items for sale in over 50,000 categories

eBay stores over 2 Petabytes of data — over
200 times the size of the Library of Congress!

The eBay platform handles 4.4 billion API
calls per month

In a dynamic environment
300+ features per quarter
We roll 100,000+ lines of code every two weeks

In 38 countries, in seven languages, 24x7

Over 2> Million pounds of
Kimchi are sold every year!

>44 Billion SQL executions/day!

AcCTgom

www.auction.co.kr

an @b company

© 2006 eBay Inc.

Architectural Forces: What do we think about?

e
Scalability
Resource usage should increase linearly with load
Design for 10x growth in data, traffic, users, etc.

Availability
Resilience to failure
Graceful degradation
Recoverability from failure

Latency

User experience latency
Data latency

Manageability
Simplicity
Maintainability
Diagnostics

Cost

Development effort and complexity
Operational cost (TCO
3 p (TCO) eh

© 2006 eBay Inc.

Architectural Strategies: How do we do it?

e

Strategy 1: Partition Everything
“How do you eat an elephant? ... One bite at a time”

Strategy 2: Async Everywhere
“Good things come to those who wait”

Strategy 3: Automate Everything

“Give a man a fish and he eats for a day ... Teach a man to fish and he eats for a
lifetime”

Strategy 4. Remember Everything Fails
“Be Prepared”

: el

© 2006 eBay Inc.

Strategy 1: Partition Everything
e

Split every problem into manageable chunks
By data, load, and/or usage pattern
“If you can’t split it, you can’t scale it”

Motivations
Scalability: can scale horizontally and independently
Availability: can isolate failures
Manageability: can decouple different segments and functional areas
Cost: can use less expensive hardware

Partitioning Patterns
Functional Segmentation
Horizontal Split

5 el

© 2006 eBay Inc.

Partition Everything: Databases

Pattern: Functional Segmentation
Segment databases into functional areas

DD S

User ltem Transaction Product Account Feedback

Group data using standard data modeling techniques
Cardinality (1:1, 1:N, M:N)
Relationships
Usage characteristics
Logical hosts
Abstract application’s logical representation from host’s physical location
Support combining and splitting without code change

Over 1000 logical databases on ~400 physical hosts

6 el

© 2006 eBay Inc.

Partition Everything: Databases

e

Pattern: Horizontal Split

Split databases horizontally along primary access path

Multiple split approaches for different use cases
Modulo on key (item id, user id, etc.)
Lookup- or range-based

Aggregation / routing in Data Access Layer (DAL)
Abstracts developers from split logic, logical-physical mapping
Routes CRUD operation(s) to appropriate split(s)
Supports rebalancing through config change

Application Server
DAL

7 ltemHost 0 ItemHost 1 ltemHost 2 ltemHost 19 d3

© 2006 eBay Inc.

Partition Everything: Databases
e

Corollary: No Database Transactions
Transaction policy
Absolutely no client side transactions, two-phase commit, etc.
Auto-commit for vast majority of DB writes
Anonymous PL/SQL blocks for transactions within single database
Consistency without transactions
Careful ordering of DB operations
Recovery through
Asynchronous recovery event

Reconciliation batch

Failover to guaranteed async flow
Additional benefits
Avoids deadlocks
Avoids coupling availability
Maximizes update concurrency
All consistency is not created equal (!)

: el

© 2006 eBay Inc.

Partition Everything: Application Tier
e ———

Pattern: Functional Segmentation
Segment functions into separate application pools
Allows for parallel development, deployment, and monitoring
Minimizes DB / resource dependencies

Pattern: Horizontal Split
Within pool, all application servers are created equal
Routing through standard load-balancers
Allows for staged rollouts, rolling updates

Selling Search View Item Bidding

MyEbay Checkout Feedback

*Over 16,000 application servers in 220 pools =h

© 2006 eBay Inc.

Partition Everything: Application Tier
e

Corollary: No Session State
User session flow moves through multiple application pools

Absolutely no session state in application tier
Transient state maintained / referenced by
URL
Cookie
Scratch database

o el

© 2006 eBay Inc.

Partition Everything: Search
e

Pattern: Functional Segmentation
Read-only search function decoupled from write-intensive transactional databases

Pattern: Horizontal Split
Search index divided into grid of N slices (“columns”) by modulo of a key
Each slice is replicated to M instances (‘rows”)
Aggregator parallelizes query over all N slices, load-balances over M instances

Aggregator
S A A A A S —
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col N
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col N
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 ColN
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col N

» Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col N dj

© 2006 eBay Inc.

Strategy 2: Async Everywhere
e

Prefer Asynchronous Processing
Move as much processing as possible to asynchronous flows
Where possible, integrate disparate components asynchronously

Motivations

Scalability: can scale components independently

Availability
Can decouple availability state (up/down)
Can decouple availability characteristics (always available, best effort)
Can retry operations

Latency
Can improve user experience latency at cost of data/execution latency
Can allocate more time to processing than user would tolerate

Cost: can spread peak load over time

Asynchrony Patterns
Message Dispatch
Periodic Batch dI

© 2006 eBay Inc.

Async Everywhere: Event Streams

e T
Pattern: Message Dispatch

Primary use case produces event
E.g., ITEM.NEW, BID.NEW, ITEM.SOLD, etc.
Event typically created transactionally with insert/update of primary table
Consumers subscribe to event
Multiple logical consumers can process each event
Each logical consumer processes event independently
Within each logical consumer, single consumer instance processes event
Guaranteed at least once delivery; no guaranteed order
Managing timing conditions
Idempotency: processing event N times should give same results as processing once
Readback: consumer typically reads back to primary database for latest data

. ITEM.NEW (w
Selling Q j

Itemk.ost N

Image Processing
Summary Update

User Metrics

eh

© 2006 eBay Inc.

‘Over 100 logical consumers consuming ~300 events

Async Everywhere: Search Feeder Infrastructure

e T
Pattern: Message Dispatch

Read and transform item updates from primary database
Normalize text, augment with metadata, augment with additional inferences
Reliable multicast
Publish updates to search service
Persist messages in intermediate data store for recovery
Resend recovery messages when messages are missed
Search nodes listen to updates

Aggregator
Listen to assigned subset of messages |
Update in-memory index in real time *L *L l *L
—> Col 1 Col 2 Col N
Request recovery
—> Col1 Col 2 ColN
=
o
n
Search Feeder —————> 2 ___CHENN INESES Col N
(1]
g
Primary DB ®— cCol1 Col 2 Col N
—> Col1 Col 2 ColN
WV
& €h

Search DB © 2006 eBay Inc.

Async Everywhere: Batch
e

Pattern: Periodic Batch

Scheduled offline batch process
Most appropriate for
Infrequent, periodic, or scheduled processing (once per day, week, month)
Non-incremental computation (a.k.a. “Full Table Scan”)
Examples
Generate recommendations (items, products, searches, etc.)
Import third-party data (catalogs, currency, etc.)
Compute sales rank
Archive / purge deleted items
Often drives further downstream processing through Message Dispatch

. el

© 2006 eBay Inc.

Strategy 3: Automate Everything

R NS
Prefer Adaptive / Automated Systems to Manual Systems

Motivations
Scalability
Can scale with machines, not humans
Availability / Latency
Can adapt to changing environment more rapidly
Cost
Machines are far less expensive than humans
Can learn / improve / adjust over time without manual effort
Functionality
Can consider more factors in decisions

Can explore solution space more thoroughly and quickly

Automation Patterns

Adaptive Configuration
16 Machine Learning d}

© 2006 eBay Inc.

Automate Everything: Event Consumer Configuration

e

Pattern: Adaptive Configuration

Define service-level agreement (SLA) for a given logical event consumer
E.g., 99% of events processed in 15 seconds

Consumer dynamically adjusts to meet defined SLA with minimal resources
Event polling size and polling frequency
Number of processor threads

Automatically adapts to changes in
Load (queue length)
Event processing time

Number of consumer instances

SLA 15 seconds
Consumer A

SLA 30 seconds
Consumer B

SLA 5 minutes
Consumer C

" el

© 2006 eBay Inc.

Automate Everything: Adaptive Finding Experience

D TR
Pattern: Machine Learning

Dynamically adapt experience

Choose page, modules, and inventory which provide best experience for that user and
context

Order results by combination of demand, supply, and other factors (“Best Match”)
Feedback loop enables system to learn and improve over time

Collect user behavior

Aggregate and analyze offline Decide

Deploy updated metadata : =

Decide and serve appropriate experience _ ﬁ = -
Best Practices | |2 ;

“Perturbation” for continual improvement
Collect Deploy
I |

=r=
| O/

Aggregate

Dampening of positive feedback

© 2006 eBay Inc.

Strategy 4: Remember Everything Fails

e
Build all systems to be tolerant of failure
Assume every operation will fail
Assume every resource will be unavailable
Detect failure as rapidly as possible
Recover from failure as rapidly as possible
Do as much as possible during failure

Motivation
Availability

Failure Patterns

Failure Detection
Rollback
Graceful Degradation

o el

© 2006 eBay Inc.

Everything Fails: Central Application Logging
e

Pattern: Failure Detection

Application servers log all requests
Detailed logging of all application activity, especially database and other external resources
Log request, application-generated information, and exceptions

Messages broadcast on multicast message bus

Listeners automate failure detection and notification
Real-time application state monitoring: exceptions and operational alerts
Transaction reports by application server pool, URL, database, etc.

Selling Search View Item

J | l

Message Bus

| l :

Alert Listener Report Listener Data
Cube

File Log
20

Over 1.5TB of log messages per day dj

© 2006 eBay Inc.

Everything Fails: Code and Feature Deployment

D
Pattern: Rollback

Absolutely no changes to the site which cannot be undone

Code Deployment: Rollout / Rollback
Entire site rolled every 2 weeks: 16,000 application servers in 220 pools
Many deployments have dependencies between pools
Rollout plan contains explicit set (transitive closure) of all rollout dependencies

Automated tool executes staged rollout, with built-in checkpoints and immediate rollback if
necessary

Automated tool optimizes rollback, including full rollback of dependent pools
Feature Deployment: Wire-on / Wire-off

Every feature has on / off state driven by central configuration

Allows feature to be immediately turned off for operational or business reasons

Decouples code deployment from feature deployment

Applications can check for feature “availability” in the same way as they check for resource
availability

© 2006 eBay Inc.

Everything Fails: Markdown
e ———

Pattern: Failure Detection

Application detects when database or other backend resource is unavailable or
distressed

“Resource slow” is often far more challenging than “resource down” (!)

Pattern: Graceful Degradation

Application “marks down” the resource
Stops making calls to it
Sends alert

Non-critical functionality is removed or ignored
“‘Limp mode” operation

Critical functionality is retried or deferred
Failover to alternate resource
Defer processing to guaranteed async message

Explicit “markup”

Allows resource to be restored and brought online in a controlled way

2 el

© 2006 eBay Inc.

Recap: Architectural Strategies

e

23

Strategy 1: Partition Everything

Strategy 2: Async Everywhere

Strategy 3: Automate Everything

Strategy 4. Remember Everything Fails

ebY

© 2006 eBay Inc.

+ Randy Shoup, eBay Distinguished Architect

rshoup@ebay.com

© 2006 eBay Inc.

