
Configuring the Spring
Container

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

Rod Johnson
CEO

Interface21

Topics

• Spring container philosophy
• Spring configuration metadata
• XML configuration
• XML alternatives

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• XML alternatives
– Spring 2.5 annotations
– Spring Java Config
– Scripting language configuration

• Recommendations

Spring Container Philosophy

• Mission
– To provide the ultimate component model for the enterprise
– To support different programming models on a common

foundation

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– To provide value adds for components, however defined
• True AOP
• Transaction management
• JMX
• Third party integrations…

• Expressed through a contributions approach

Spring

Annotations Java ConfigXML

OSGi

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

PitchforkSCA

Web
Services

OSGi

• Transactions • Security • Lifecycle

Topics

• Spring container philosophy
• Spring configuration metadata
• XML configuration
• XML alternatives

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• XML alternatives
– Spring 2.5 annotations
– Spring Java Config
– Scripting language configuration

• Recommendations

Spring Configuration

• Java metadata used internally by the
container for
– Instantiation
– Configuration

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– Configuration
– Decoration
– Assembly
– Instance Management (lifecycle)

In short
• Spring + cfg + classes = ready-to-use app

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

The BeanDefinition interface

• Contains
– Bean class or parent
– Properties
– Constructor args

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– Constructor args
– Scope
– “Autowiring” information
– …More advanced stuff

• The XML <bean> element carries the same metadata

<beans>
<bean id="accountService" class="...DefaultAccountS ervice">

<property name="accountDAO" ref="accountDao" />
</bean>

<bean id="accountDAO" class="...JdbcAccountDAO"
init - method="init">

Using the XML <beans> element

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

init - method="init">
<property name="dataSource" ref="dataSource" />

</bean>

</beans>

XML Namespaces: Since Spring 2.0

• Key benefit:
– Allows a higher level of abstraction

• Better express the intent
• More concise

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• More concise

• No longer a 1:1 mapping between XML
element and bean definition

• Can emit 0 or more bean definitions

Using a namespace

<bean id="dataSource“
class="...JndiObjectFactoryBean">

<property name="jndiName" value="jdbc/AccountData"/ >
</bean>

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

</bean>

<jndi:lookup id="dataSource"
jndiName="jdbc/AccountData"/>

When to use XML namespaces

• To define beans of the same class repeatedly, and
set the same properties each time

• To define a group of beans that must work together
• To create a configuration DSL that will be reused

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• To create a configuration DSL that will be reused
across a project or company.

• For conditional contribution that may generate no
bean definitions in some cases, or even alter other
bean definitions

• To create an abstraction between configuration file
and implementing class

• To migrate existing XML formats to configure Spring

When not to use XML namespaces

• To define application classes that will be used only
once or very few times

• Remember the lessons of JSP custom tags??

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Remember the lessons of JSP custom tags??

• Remember
– <bean> definitions are universally understood

Summary: XML Pros

• Most powerful configuration option
– Offers per-instance control, which you can’t get wi th

annotations
• Easy to understand
• Good for defining simple type values

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Good for defining simple type values
• Externalized from code

– Can change configuration without recompilation
– Configuration can be changed by non Java developers

• Platform independent
• Supports validation

– Especially with schemas
• Excellent IDE support with Spring IDE, IntelliJ

XML Cons

• Refactoring unfriendly
• Reliance on String identifiers
• Verbose

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Verbose
– Angle bracket noise

• Limited hierarchical model
• Files can become large

Topics

• Spring container philosophy
• Spring configuration metadata
• XML configuration
• XML alternatives

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• XML alternatives
– Spring 2.5 annotations
– Spring Java Config
– Scripting language configuration

• Recommendations

Annotations

• Add metadata to source code
• Spring has offered annotations for enterprise

services (such as @Transactional) since 1.2

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

services (such as @Transactional) since 1.2
• Comprehensive annotation support for DI

introduced in Spring 2.5

Purpose of annotations for DI

• Annotations applied to classes, methods or fields

• Annotations on classes identify components to be
managed by Spring

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

managed by Spring
• Annotations on methods identify methods whose

arguments should be injected
– Can have multiple arguments

• Optional annotations on method arguments provide
information about how to resolve dependency

• Annotations on fields identify value that should be
injected

Spring stereotype annotations

• @Service
– Identifies a stateless service

• @Repository
– Identifies a repository (DAO)

• @Aspect

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– @AspectJ aspect
• @Controller

– Spring MVC controller

• Can define your own…
• @Component

– Meta-annotation
• Annotate your own annotation with @Component and hey presto! your

classes get picked up by scanning

A word on appropriate use of annotations

• Annotations are ideal for indicating the role of
something in an application

• Not ideal for carrying string values or other
implementation-specific details

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

implementation-specific details
– Does not result in strong typing
– Means Java code needs to be recompiled to change values

that should be externalized

• Stereotypes are an ideal use

Component Scanning

• Scans the classpath for annotated classes
• Removes the need for XML definitions unless you

want to do something you can’t do in annotations

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

@Service
public class DefaultAccountService { ...

<bean id= "defaultAccountService "
class= "DefaultAccountService "/>

Component Scan Usage

• Use context namespace
• Specify package to pick up
• Can coexist with XML bean definitions and

namespaces

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

namespaces

<context:component-scan
base-package= "com.mycompany.myapp"/>

More advanced component scanning
usage

• Not limited to annotations
– Can use type or other checks

• Highly customizable, as you expect from Spring

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

<context:component-scan base-package ="blog"
use-default-filters="false">

<context: include-filter type=" annotation "
expression="org.sf.stereotype.Component"/>

<context:include-filter type=" regex "
expression="blog\.Stub.*"/>

<context: exclude-filter type=" assignable "
expression="blog.JdbcMessageRepository"/>

</context:component-scan>

Component Scan Pros

• No need for XML unless you need the greater
sophistication it allows

• Changes are picked up automatically
– Great during development

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Works great with Annotation Driven Injection
– picking up further dependencies with @Autowired

• Highly configurable

Component Scan Cons

• Not a 100% solution
– Can’t do everything with annotations

• Requires classes to be annotated
• Need to take care not to scan an excessive number

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Need to take care not to scan an excessive number
of classes, using Spring’s filtering mechanism

• Don’t get the valuable application structure blueprints
you get with XML configuration
– Although Spring IDE can unify all Spring component

definitions

Resolving Dependencies:
@Autowired

• Provides injection at constructor/field/method level
• Supports multi argument methods

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

@Autowired
public void createTemplates(DataSource ds,

ConnectionFactory cf) {
this.jdbcTemplate = new JdbcTemplate(ds);
this.jmsTemplate = new JmsTemplate(cf);

}

Resolution of dependencies by name

public class JdbcOrderRepositoryImpl

implements OrderRepository {

@Autowired

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

public void init(
@Qualifier("myDataSource“) orderDataSource,

@Qualifier("otherDataSource")
inventoryDataSource,

MyHelper autowiredByType) {

// ...

}

Resolution of dependencies by annotation

public class JdbcOrderRepositoryImpl

implements OrderRepository {

@Autowired

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

@Autowired

public void setOrderServices(

@EmeaOrderService emea,

@Apac OrderService apac) {

// ...

}

JSR-250 annotations also supported

• @PostConstruct
– Similar to InitializingBean#afterPropertiesSet()

• @PreDestroy

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• @PreDestroy
– Similar to DisposableBean#destroy()

• @Resource
– Identifies injection point

public class DefaultAccountService

implements AccountService {

@Resource

private AccountDAO jdbcAccountDAO;

...

@Resource Example

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

...

}

public class JdbcAccountDAO implements AccountDAO {

@PostConstruct

public void init() {...} ...

}

@Resource Pros

• Supports Java EE 5 configuration style
– Note: Spring does not require that dependencies are

resolved from JNDI, although it supports this

• Compiler support through annotations

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Compiler support through annotations
• Reuses annotation context
• Fine grained injection

@Resource Cons

• Classes need to be annotated
• Unsophisticated

– @Resource style is not as powerful as Spring @Autowired
approach

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

approach
– No support for “qualifiers” or annotation resolution

Spring Java Configuration

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring Java Configuration

• Annotation-centric approach, but very different
– Annotations are in dedicated configuration classes, not

application classes

• Allows objects to be created and wired in Java

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Allows objects to be created and wired in Java

@Configuration

• Similar to <beans/>

• Specifies a configuration class
• Defines defaults for the current context

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

@Configuration(

defaultAutowire = Autowire. BY_TYPE,

defaultLazy = Lazy. TRUE)

@Bean

• Similar to <bean>

• Indicates a bean creation method
• Supports standard bean attributes from

BeanDefinition internal metadata

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

BeanDefinition internal metadata
– lazy
– scope
– depends-on

@Bean

@Bean (scope = REQUEST)
public Page currentPage() { … }

@Bean (scope = SESSION,

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

@Bean (scope = SESSION,
destroyMethodName = “shutdown”);

public Preferences prefs() { … }

@Bean (lazy = Lazy.FALSE);
public Admin admin() { … }

Java Configuration Class Example
@Configuration
public abstract class JavaConfig {

@Bean
public AccountDAO accountDAO() {

// return new InMemoryAccountDAO();
JdbcAccountDAO dao = new JdbcAccountDAO();
dao.setDataSource(dataSource());
dao.init();
return dao;

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

return dao;
}
@Bean
public AccountService accountService() {

DefaultAccountService service = new DefaultAccountS ervice();
service.setAccountDAO(accountDAO());
return service;

}

@ExternalBean
public abstract DataSource dataSource();

}

@Bean

public AccountDAO accountDAO() { ... }

...

service.setAccountDAO(accountDAO());

Bean-to-Bean Dependencies are handled
elegantly

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

service.setAccountDAO(
ctx.getBean(“accountDAO”));

• Easy way to reference external beans
• Strongly typed

@ExternalBean

public abstract DataSource dataSource();

@ExternalBean – Reference external

beans

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

public abstract DataSource dataSource();

public DataSource dataSource() {

return (DataSource) ctx.getBean(“dataSource”);

}

• Easy way to reference external property values
• Strongly typed

@ExternalValue

public abstract int getAge();

@ExternalValue – Reference external

properties

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

public abstract int getAge();

public int getAge() {

// Look up external properties value and return

}

Private/Hidden beans

• Unique feature

• Non-public methods create ‘private’ beans
• Invisible to the ‘owning’ context

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Invisible to the ‘owning’ context
• Similar to inner beans but with full scope support
• Visible only to beans inside the same configuration

Private beans example

@Bean
public AccountService accountService() {

AccountService service = new DefaultAccountService();
service.setAccountDAO(hiddenDAO());
return service;

}

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

}

@Bean
protected AccountDAO hiddenDAO() {

return new InMemoryAccountDAO(); }

@Bean
private Object secretDAO() {

return new JdbcAccountDAO();}

Private beans and contexts

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

Bootstrapping Java Configuration

• Dedicated application context

ApplicationContext ctx =
new AnnotationApplicationContext(

"**/springone/JavaConfig.class");

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• BeanFactoryPostProcessor allows use in a regular application context
• Just define @Configuration classes as beans

– Can inject them normally

<bean class=“org.springone.JavaConfig"/>
<bean class="org.springframework.config.java.

process.ConfigurationPostProcessor"/>

"**/springone/JavaConfig.class");

Java Configuration Pros

• Pure Java
– Allows visibility control
– Allows use of inheritance in

configurations
• Powerful object creation

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Powerful object creation
– Ability to use arbitrary Java code
– Good for configuring existing classes

• Refactoring friendly
• Strongly typed
• Preserves valuable application

blueprint
• IDE support with Spring IDE

Java Configuration Cons

• Configuration changes require recompilation
• Requires CGLIB

– no final classes/methods
– only for configuration classes

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– only for configuration classes

Annotation configuration vs Spring Java
Configuration

• Different philosophies
– Annotation driven injection adds metadata to

container identifying components and injection
methods

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

methods
– Java Configuration is programmatic object

creation

Mix and Match

• All Spring metadata in the end
• One approach does not exclude others
• Can have multiple contributions to the

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Can have multiple contributions to the
one context

Example: Spring JavaConfig + XML

@Bean
EditOwnerForm editOwnerForm() {

EditOwnerForm form = new EditOwnerForm()

form.formView = "ownerForm"
form.successView = "ownerRedirect"

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

form.successView = "ownerRedirect"
form.validator = ownerValidator()
form.clinic = clinic()

return form
}

// defined through XML
@ExternalBean
abstract Clinic clinic()

<bean id=“clinic"
class=“...JpaClinic">

...
</bean>

Spring IDE Visualization and Editing
support

• Spring IDE provides sophisticated visualization and
editing support for bean definitions, however defined

• Unified view of configuration

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

Configuration overview

• Configuration becomes more static over time
– Except for simple configuration properties, which should be

externalized from Java code

• Static wiring
– Java Configuration + Annotation DI

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– Java Configuration + Annotation DI

• Not so static (changes all the time) configuration
– XML

• Simple values (urls and passwords)
– Properties files, externalized from XML or Java

• Specialized configurations
– DSL / XML namespaces

Future Directions

• Will continue to offer additional configuration options
for our strong, extensible component model

• May also offer dynamic configuration
– Database

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

– Database
– “Warm” and “cold” start

Summary

• Spring > XML
– Provides the ultimate component model for

enterprise Java

• Often appropriate to use more than one

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Often appropriate to use more than one
strategy
– Can mix and match
– Choose the best approach for each requirement

• Be Pragmatic
• Be Consistent

Spring is About Choice

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

• Unlike other solutions, Spring does not aim to impose
behaviors
– No one size fits all
– This is one of the secrets of Spring’s success…

Q&A

Copyright 2004-2007, Interface21 Inc. Copying, publishing, or
distributing without expressed written permission is prohibited.

