

WS-* vs. REST:
Mashing up the Truth from

Facts, Myths and Lies

Sanjiva Weerawarana, Ph.D.

Founder, Chairman & CEO, WSO2
sanjiva@wso2.com

QCon San Francisco – November 8, 2007

About me ..

● Original author of WSDL 1.1, editor of WSDL 2.0
● Created Apache SOAP
● Longtime contributor to Apache Axis, Axis2
● Created Apache WSIF
● Co-author of BPEL4WS, WS-Addressing, WS-

Eventing, WS-Policy and others
● Bean Markup Language (98), BSF (99)
● Author of “Web Services Platform Architecture”,

Prentice Hall, 2005
● Member of Apache Software Foundation, ex-

Board Member OSI, Founder & Director of LSF

A bit of history ..

● Why were “Web services” (aka WS-*) created?
– 1998-9: Lots of people were building “e-commerce”

applications using XML & HTTP
– Everyone invented their own way to do security,

reliability, transactions
● E.g.: RosettaNet, ebXML

– Not good if you want to be a middleware provider to
multiple vertical industries

– Needed a common way to do common things
● Cynical view:

– RPC between .Net and Java

Web services design rationale

● World is not all about HTTP
● World is not all about XML
● World is not all about XML Schema
● Not all interactions are request/response
● Full security, reliability etc. are needed but not

all the time: composability of features is key

Lie:
Web Services Need WS-*

Um, no.

● WS-* is just overhead unless you have
something in your SOAP headers
 <s:Envelope>

 <s:Header/>
 <s:Body>
 <RealXMLPayload/>
 </s:Body>
</s:Body>

● If HTTP(S) + XML is enough for the problem,
more power to you

Lie:
Web Services Don't Need WS-*

Sure, let's all go back to 1998!

● There is no commonly accepted, aka
interoperable, REST model for:
– Message Signing / Non-repudiation
– Reliable Messaging

● REST-* on its way! ARGH!!
– HTTPR, anyone?

● You say “who needs them?”
– Just listen to the next talk by Pete Lacey ;-)

Myth:
WS-* is Complex

Tim Bray ...

InnoQ.com ...

Is WS-* really complex?

● For the middleware implementor- yes, quite
● For the application developer, NO!

– If implementing services you should focus on dealing
with the payload and let the middleware do the rest

– Or find better middleware!

● WS-* programmers need to understand XML,
XML Schema, WSDL and WS-Policy
– If they tell you otherwise, find better software

Analogy

● Is TCP/IP complex?
– For the stack implementor- yes, quite
– For the application developer, NO!

● Is HTTP complex?
– For the server implementor or client implementor-

yes, quite
● Not convinced? See Sam Ruby's ETech 2005 presentation:

“Just” Use HTTP [http://intertwingly.net/slides/2005/etcon/]

– For the application developer, NO!

Lie:
SOAP is RPC

Reality

● 1999: SOAP 0.9 – RPC, HTTP only
● 2000: SOAP 1.1 – RPC support, not HTTP only
● 2003: SOAP 1.2 – Messaging format with RPC

pattern supported

“SOAP is fundamentally a stateless, one-way
message exchange paradigm, but applications
can create more complex interaction patterns
by combining such one-way exchanges”
- SOAP 1.2 Primer, W3C

Myth:
REST is Easy to Learn

Really?
● HTTP 0.9/1.0/1.1, PEP, HTML, XHTML

● Media Types, MIME, S/MIME

● JSR 311 – JARWS

● POST Once Exactly

● SSL/TLS

● URL, URI, URN, IRI

● WebDav, DeltaV

● XForms, XML, XML Schema, XPath, XSLT, CSS

● JSON

● WebAPI, XMLHttpRequest, AJAX, Comet

● RDDL, Microformats, GRDDL, etc…

● Atom, Atom Publishing Protocol, GData, etc…

● RFCs 1945, 2068, 2069, 2109, 2145, 2169, 2227, 2295, 2296, 2518, 2616, 2617,
2774, 2817, 2818, 2935, 2936, 2964, 2965, 3143, 3205, 3229, 3230, 3310, 4130,
4169, 4229, 4236, 4387, 4559, 4918

Don't forget the bible:

And the new testament:

Lie:
REST is Simple

Um, no.

● REST is an “architectural style”
– implementation
– architecture
– architectural style

● An analogy
– implementation: code (say Java or C++)
– model: UML
– meta-model: MOF

Increasing levels
of abstraction

And Model Driven Architecture was
supposed to rule us all.

Reality

● True REST is still an art form
– Example: AtomPub, the poster-child of RESTfulness,

took a lot of effort by a lot of really smart people
● (and apparently they didn't get it right .. Web3S)

– And that's just one RESTful application

● Are you smart enough to build a RESTful
application?
– I know I'm not

● Are average developers & architects able to
design RESTful systems correctly?

Lie:
REST is Easy

Hypermedia as the Engine of Application State

Fact:
REST is Full of Subtleties

The little details

● Method safety
– GET, HEAD, OPTIONS, TRACE will not modify anything

● Idempotency
– PUT, DELETE, GET, HEAD can be repeated and the

side-effects remain the same

● Caching
– Correct use of Last-Modified and ETag headers

● Uniform interface
– In practice, most servers don't do PUT/DELETE

Lie:
REST Doesn't Need WSDL

Reality

● How do I know what query parameters I can
include in a GET or POST?

● Developers need tooling- ability to find out what
data a GET on a URL will give at development
time is critical – text/xml isn't enough

● To make HatEoAS work, you need to really
understand the media type and have a priori
code written that know where to look for links
that capture application state

Lie:
Content Negotiation, the

Savior!

Content negotiation has failed

HTTP content negotiation was one of those "nice in
theory" protocol additions that, in practice, didn't work
out. The original theory of content negotiation was
worked out when the idea of the web was that
browsers would support a handful of media types
(text, html, a couple of image types), and so it might be
reasonable to send an 'accept:' header listing all of the
types supported. But in practice as the web evolved,
browsers would support hundreds of types of all
varieties, and even automatically locate readers for
content-types, so it wasn't practical to send an 'accept:'
header for all of the types.

- Larry Masinter, April 11, 2006.

Myth:
REST Programmers Eat the

Payload Directly

Reality

● WS-* tools have made programmers lazy by
introducing “data binding”
– Duh, what a mistake

● Programming XML in Java still sucks

● RESTfulness won't remove programmers' urge
to look for restfulness

Myth:
WSDL is Wildly Popular

“Dev: (Reads WSDL spec). I trust that the guys
who wrote this have been shot. It’s not
even internally consistent. And what’s with all
this HTTP GET bindings. I thought GET was
undefined.”

- Pete Lacy, “S Stands for Simple”, Nov 15, 2006

Reality

● Any damned fool could come up with a better
description language than WSDL!

● But .. you just have to get the whole world to
accept it.
– Good luck – see you at QCon 2015!

Myth:
WSDL can't describe RESTful

Services

Reality

● True, WSDL 1.1 was terrible at it

● WSDL 2.0 can describe any RESTful service!
– Example of an APP description

● WSDL 2.0 and WADL are basically the same,
except inverted in thinking
– WADL: start with resources and show what operations

you can do against them
– WSDL: start with operations and say which resources

you can apply them to

Myth:
HTTP, the One True Protocol

Reality

● Enterprisey
– JMS, SMTP, TCP, IIOP, MQSeries

● Cool
– Jabber/XMPP, YahooIM, SIP

Also ...

● HTTP's uniform interface is the greatest – until
we need just a tad more
– WebDAV & DeltaV: a whole bunch more
– PATCH: just one more to get APP right

Myth:
REST is Multiprotocol

.. was one of those "nice in theory" .. that,
in practice, didn't work out

Myth:
REST is Scalable

Reality

● True, very true ..
– .. as long as you don't want security

● Oh- you want both caching and security? Sorry,
we don't do that here.

Myth:
SOA was a Response to REST

Huh?

SOA

● IBM Emerging Technology group (under Rod
Smith) was thinking about SOA from late 90s
– This paper was a culmination of that work!

● First “SOA Platform”, IBM Web Services Toolkit,
was first released in early 2001
– Original version done by my group in IBM Research :-)

● SOA was NOT an industry response to REST

Fact:
REST is HOT, WS-* is NOT!

Trough of Disillusionment

Peak of Inflated Expectations

Slope of Enlightenment

Plateau of Productivity

Technology Trigger

REST

WS-*

Damned Lie:
Its easy with REST or WS-*!

Reality

● Distributed computing is hard no matter what!

My Advice

● Don't get caught up in hype
● REST and WS-* both have strengths and

weaknesses; neither is the silver bullet
● If writing services, write them so you can offer

either a RESTful interface or a WS-* one
– Similar to what POJOs did for J2EE .. focus on your part

and let the environment provide the rest
● Building scalable, interoperable distributed

systems is still hard

Nahh. Just switch to Erlang.

 Wow, it really is so clear up here!

Questions?

