
Steve Vinoski
Member of Technical Staff
Verivue
Westford, MA USA

QCon November 2007

REST Eye
for the SOA Guy

Paul Downey

Just to be Clear

REST: Representational State Transfer

SOA: Service-Oriented Architecture

How many of you are
“SOA Guys?”

3

SOA Basics
Recognize similar abstractions across applications,
separate them out into reusable services

Service contracts are public, service implementations
are private

During development, continually alternate between top-
down (application) and bottom-up (service) views

Minimize coupling, maximize cohesion

Gain buy-in across the organization to achieve
common practices across the enterprise

4

Typical Features of
Service-Oriented Systems

Registries, where services advertise and applications
lookup and find services

Repositories, where services store metadata useful for
application design and deployment

Definition languages, for service contracts

Service platforms, providing design- and run-time
support for service creation, deployment, and execution

5

SOA Governance

Enterprises contain internal organizational boundaries

SOA systems tend to be distributed and more likely to
cross such boundaries

Want to maximize reuse and avoid duplicated effort
across the enterprise

Need rules regarding service ownership, deployment,
usage, monitoring, management, security,
maintenance, etc.

6

SOA Does Not Mean...

7

SOA Does Not Mean...

Scrap Old Applications

7

SOA Does Not Mean...

Scrap Old Applications

State Of (the) Art

7

SOA Does Not Mean...

Scrap Old Applications

State Of (the) Art

Special Object Annotations

7

SOA Does Not Mean...

Scrap Old Applications

State Of (the) Art

Special Object Annotations

Same (vendor) On All

7

SOA Does Not Mean...

Scrap Old Applications

State Of (the) Art

Special Object Annotations

Same (vendor) On All

Scalable Optimal Architecture

7

Fundamentally, SOA is...

8

Fundamentally, SOA is...

...comprised of loose recommendations that essentially
reiterate elementary software development practices

8

Fundamentally, SOA is...

...comprised of loose recommendations that essentially
reiterate elementary software development practices

...lacking when it comes to actual architecture

no elements, relationships, properties, or constraints

technical SOA systems have these, but they’re not
consistent

8

Fundamentally, SOA is...

...comprised of loose recommendations that essentially
reiterate elementary software development practices

...lacking when it comes to actual architecture

no elements, relationships, properties, or constraints

technical SOA systems have these, but they’re not
consistent

...really about organizational IT culture —”the business
of IT” — and also partly about control

8

SOA Guy Says...

“Steve, I’m not sure I like
where you’re going with
this!”

REST Basics

The term “Representational State Transfer” was coined
by Roy T. Fielding in his Ph.D. thesis, published in
2000: “Architectural Styles and the Design of Network-
based Software Architectures”

REST is an architectural style that targets large-scale
distributed hypermedia systems

It imposes certain constraints to achieve desirable
properties for such systems

Desired System Properties

Performance, scalability, portability

Simplicity: simple systems are easier to build, maintain,
more likely to operate correctly

Visibility: monitoring, mediation

Modifiability: ease of changing, evolving, extending,
configuring, and reusing the system

Reliability: handling failure and partial failure, and
allowing for load balancing, failover, redundancy

SOA Guy Says...

“So what? All distributed or
network programming
approaches also want to
achieve those properties,
including SOA.”

Constraints Induce Desired
Properties

REST intentionally places constraints on the system to
induce these properties

In general, software architecture is about imposing
constraints and choosing from the resulting trade-offs
in order to achieve desired properties

Contrast with SOA: it imposes zero constraints

REST Constraints

Client-Server

Statelessness

Caching

Layered System

Uniform Interface

Code-on-demand (optional, so we’ll skip this)

SOA Guy Says...

“Well, what about that
client-server constraint?
Isn’t that the same old
client-server idea that’s
been around for forever?
Next you’re gonna tell me
the REST guys invented it,
right?”

Client-Server Constraint
What: clients and servers are distributed; clients send
requests to servers, and servers reply

Why: enables separation of concerns, sharing, and
reuse, especially across organizational boundaries,
which coincidentally is a basic goal of SOA

Why: allows applications to be distributed, replicated,
fault-tolerant, etc.

Contrast with SOA: OASIS SOA Reference Model
includes distribution in its definition of SOA

Statelessness Constraint
What: resources hold resource state, clients hold
application state

Why: makes for simpler, more reliable, partitionable,
more scalable servers that can more easily manage
their resources

Trade-off: clients get slightly more complicated for
having to hold application state, but this approach
works best for distributed systems

Contrast with SOA: undefined

Caching Constraint
What: servers control cacheability of their responses

What: when clients use cached responses, they avoid
unnecessary network and server activity

Why: obviously, this constraint can significantly help
system scalability and performance

Contrast with SOA: huge hole here — many SOA-
based systems don’t perform caching, nor do they
allow statements of cacheability

In SOA you cache at your own risk, or invent your
own caching protocols

Layered System Constraint

What: system layers interact only with adjacent layers

Why: allows for hiding/encapsulation, proxies,
gateways, policy management at boundaries

Why: simplifies system by confining interactions, so you
get better observability, management, evolution

Contrast with SOA: undefined

Uniform Interface Constraint

What: all servers present the same general interface to
clients

In HTTP, this interface comprises the protocol’s
verbs: GET, PUT, POST, DELETE

Why: important for implementation hiding, visibility of
interactions, intermediaries, scalability

This constraint induces several more constraints,
described later

SOA Guy Says...

“A uniform what? That’s
unworkable! My services
are all different, how can
they all have the same
interface?”

Revisiting SOA Discovery

Earlier I said SOAs typically support registries and
repositories for service discovery and metadata

Finding & using a service requires knowing its interface
ahead of time, otherwise you can’t use what you find

In such systems, code is constantly dealing with
interface issues

Consider just how many pages CORBA, COM, WS-*
devote to interface definitions alone

Interfaces and Scalability

Specialized interfaces inhibit scalability

they require custom client coding

they also limit service discoverability

every interface is essentially a custom protocol that
might keep us from achieving our desired properties

versioning is a big problem

Specialized interfaces inhibit serendipitous reuse

SOA Guy Says...

“But services all have
different semantics! You
can’t just call any random
service through its uniform
interface and expect the
right thing to happen!”

Service Semantics

In REST, interface methods deal only with resource
state representations, with reasonably strong but
sometimes bendable semantics

For example, consider HTTP:

GET gets resource state (idempotent, no side effects)

PUT sets resource state (idempotent)

DELETE deletes a resource (idempotent)

POST creates/extends a resource (not idempotent)

SOA Guy Says...

“With this approach, all
type safety goes out the
window. How can I
generate services from my
programming language
classes? How do I ensure
service type safety?”

Remember, It’s Distributed!

SOA systems typically try to give distributed systems
the illusion of just extending a programming language

You can’t pretend a distributed system is a local one

Distributed systems generally don’t have distributed
compile-time type safety, and they only fake run-time
type safety

REST focuses on fully heterogeneous distributed
systems, because that’s what “large-scale” implies

SOA Guy Says...

“But, but...where’s my
IDL? Where’s my WSDL?
What describes a
resource? How do I even
know how to invoke these
resources?”

The IDL Question
Traditional IDLs exist for code generation of
programming language interfaces/classes and method
parameter data types

(there’s that programming language focus again)

No automatic systems exist that download any ol’ IDL
and generate fully-operational client applications

Nobody reads only WSDL or IDL to write their clients

In reality, actual human programmers read
documentation in order to code against resources or
services

Uniform Interface
Sub-constraints

Resource identification via Uniform Resource Identifiers
(URIs)

Resource manipulation through the exchange of
representations

Self-describing messages and possibly multiple
representation formats

Hypermedia as the engine of application state

Media Types

REST uses media (MIME) types for data definitions

Many such types are standardized/registered through
the IANA (http://www.iana.org/assignments/media-types/)

This approach allows resources to produce
representations in multiple formats

It allows clients to indicate the formats they’d prefer

IDL-based systems typically tie data definition directly
to the interface language, i.e. you have no choice

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

URIs Are Cheap, Use ‘Em

Applications can have many states and involve many
resources

If you can name a resource, give it a URI

In each resource representation, include URIs to related
resources to guide clients through the application state

Use standardized MIME types for representations, e.g.,
(X)HTML, JSON, Atom

Keep verbs out of your URIs

Summary

There’s nothing inherently wrong with SOA, but it’s all
about IT culture and organizations, not architecture

REST is an architectural style for distributed
hypermedia systems featuring specific constraints to
induce desired system properties

REST-style applications are built around the exchange
of resource state representations in standard data
formats through a fixed uniform interface

Get This Book!

This book is excellent.
It will open your eyes to
the possibilities of
REST and help you
choose the best ways
of designing REST-
based systems.

For More Information
Attend the rest of the talks in this track

Fielding’s thesis

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Read the blogs of Mark Baker, Bill de hÓra, Joe Gregorio, Paul
Downey, Benjamin Carlyle, Stu Charlton, Mark Nottingham, and
the host and speakers of this track

Sign up to the rest-discuss Yahoo mailing list

My “Toward Integration” columns in IEEE Internet Computing
sometimes discuss REST (all columns are available from http://
steve.vinoski.net/)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.markbaker.ca/blog/
http://www.markbaker.ca/blog/
http://www.dehora.net/journal/
http://www.dehora.net/journal/
http://bitworking.org/news/
http://bitworking.org/news/
http://blog.whatfettle.com/
http://blog.whatfettle.com/
http://blog.whatfettle.com/
http://blog.whatfettle.com/
http://soundadvice.id.au/blog/
http://soundadvice.id.au/blog/
http://www.stucharlton.com/blog/
http://www.stucharlton.com/blog/
http://www.mnot.net/blog/
http://www.mnot.net/blog/
http://steve.vinoski.net
http://steve.vinoski.net
http://steve.vinoski.net
http://steve.vinoski.net

Thanks

