
Golden Rules to Improve Your Architecture

20:46 © 2005-2008, hello2morrow 1

Alexander v. Zitzewitz
hello2morrow Inc.

Do you manage your architecture and technical quality?

Controlling the architecture and technical quality of software is
difficult
Achieving a good structure and a high level of quality is
obviously quite difficult (otherwise far more projects would be a
success)

20:46 © 2005-2008, hello2morrow 2

success)

Your most frightening enemy: the dragon of complexity

Your
enemy

By the way, this is not a
Chinese, but a European

dragon. (They usually
kidnap princesses)

20:46 © 2005-2008, hello2morrow 3

You

Erosion of architecture – a fundamental law?

Architecture erosion is quite a known problem
System knowledge and skills are not evenly distributed
Complexity grows faster than system size
Unwanted dependencies are created without being noticed
Coupling and complexity are growing quickly. When you realize it, it is often

20:46 © 2005-2008, hello2morrow 4

Coupling and complexity are growing quickly. When you realize it, it is often
too late
Management considers software as a black box
Time pressure is always a good excuse to sacrifice structure

Typical symptoms of an eroded architecture are a high degree of
coupling and a lot of cyclic dependencies

Changes become increasingly difficult
Testing and code comprehension also become increasingly difficult
Deployment problems of all kind

Counter measures

Avoid package cycles by using jdepend
Better than nothing
But you cannot automatically check the structure of your code
Level of abstraction is far to low

Code Reviews

20:46 © 2005-2008, hello2morrow 5

Hopeless and inefficient, at least for controlling the architecture
But - do team code reviews for mutual code comprehension

CheckStyle and FindBugs
Give little or no help on the structural level
But efficient to replace manual reviews

Check some key metrics
They help you to be aware of certain problems early enough

Micro projects
The smaller your sub-project, the more you loose flexibility

What you need

The ability to describe your architecture and some rules for
technical quality on a high level of abstraction and then
automatically check your code for compliance
A small set of relevant key metrics to keep your technical quality
under control

20:46 © 2005-2008, hello2morrow 6

under control
Architecture patterns to keep the coupling low and the structure
simple

Dependency inversion principle
Use the Spring Framework (dependency injection).

A tool that allows every developer to check for himself, if his
code changes would cause an architecture violation

Your System

User Interface

Business Logic

Definition of a Logical Architecture

C
on

tr
ac

ts

C
us

to
m

er

U
se

r

C
om

m
on

Natural subsystems

20:46 © 2005-2008, hello2morrow 7

Business Logic

Data Access

• Step 1: Cut horizontally into Layers

• Step 2: Cut vertically into vertical slices by functional aspects

C
on

tr
ac

ts

C
us

to
m

er

U
se

r

C
om

m
on

• Step 3: Defines the rules of engagement

Meta model: layers, vertical slices and subsystems

Each subsystem belongs to exactly one layer
A subsystem also might belong to a vertical slice
The association between vertical slices and subsystems is
typically implemented by a naming convention

20:46 © 2005-2008, hello2morrow 8

Vertical slices do not have to be present on every layer
Technical subsystems typically are not associated with any
vertical slice
Technical systems often do not have vertical slices at all

Mapping of physical elements to logical elements

Each package is mapped to exactly one subsystem
If package‘s contain types of several subsystems, virtual
refactorings are helpful
A good naming convention for package‘s can make your life very
simple

20:46 © 2005-2008, hello2morrow 9

simple
E.g.: com.hello2morrow.project.verticalslice.layer…

Subsystems should have interfaces
Work incrementally

Start with your layering
Then add the vertical slices (if applicable)
Define subsystem interfaces
Fine tune the rules of engagement on the subsystem level

A good architecture is a flexible architecture

You are always shooting on moving targets
To gain flexibility and potential re-usability you have to minimize
coupling

Always avoid cyclic dependencies
Your systems flexibility is inverse proportional to its coupling

20:46 © 2005-2008, hello2morrow 10

Your systems flexibility is inverse proportional to its coupling

How to keep the coupling low?

Dependency Inversion Principle (Robert C. Martin)
Build on abstractions, not on implementations
Best pattern for a flexible architecture with low coupling
Have a look at dependency injection frameworks (e.g. Spring)

20:46 © 2005-2008, hello2morrow 11

How to measure coupling

ACD = Average Component Dependency
Average number of direct and indirect dependencies
rACD = ACD / number of elements
NCCD: normalized cumulated component dependency

20:46 © 2005-2008, hello2morrow 12

6

33

1 1 1

CCD = 15
ACD = 15/6 = 2,5

3

11

2 3 2

Dependency Inversion
ACD = 12/6 = 2

6

66

1 6 1

Cycles

ACD = 26/6 = 4,33

Architecture metrics of Robert C. Martin

X is „stable“ Y is „instable“

20:46 © 2005-2008, hello2morrow 13

Di = Number of incoming dependencies
Do = Number of outgoing dependencies
Instability I = Do / (Di+Do)

Build on abstractions, not on implementations

Abstractness (Robert C. Martin)

Nc = Total number of types in a type container
Na = Number of abstract classes and interfaces in a type container
Abstractness A = Na/Nc

20:46 © 2005-2008, hello2morrow 14

D = A + I – 1

Value range [-1 .. +1]

Metric „distance“ (Robert C. Martin)

20:46 © 2005-2008, hello2morrow 15

Negative values are in the „Zone of pain“
Positive values belong to the „Zone of uselessness“
Good values are close to zero (e.g. -0,25 to +0,25)
„Distance“ is quite context sensitive

Cyclic dependencies are evil

"Guideline: No Cycles between Packages. If a group of packages have
cyclic dependency then they may need to be treated as one larger
package in terms of a release unit. This is undesirable because
releasing larger packages (or package aggregates) increases the
likelihood of affecting something." [AUP]

"The dependencies between packages must not form cycles." [ASD]

"Cyclic physical dependencies among components inhibit
understanding, testing and reuse. Every directed a-cyclic graph can be
assigned unique level numbers; a graph with cycles cannot. A physical
dependency graph that can be assigned unique level numbers is said to
be levelizable. In most real-world situations, large designs must be
levelizable if they are to be tested effectively. Independent testing
reduces part of the risk associated with software integration " [LSD]

Example : Cyclic Dependency

AlarmClock

AlarmHandler

Presentation Model

Main

AlarmToConsole

AlarmToFile

Breaking the Cycle

AlarmClock

<<abstract>>

AlarmHandler

Main

<<interface>>

IAlarmHandler

Presentation
<<bottom>>

Model

AlarmToConsole

AlarmToFile

Six golden rules for a successful project

Rule 1:
Define a cycle free logical architecture down to the level of subsystems
and a strict and consistent package naming convention
Rule 2:
Do not allow cyclic dependencies between different packages

20:46 © 2005-2008, hello2morrow 19

Do not allow cyclic dependencies between different packages
Rule 3:
Keep the relative ACD low (< 7% for 500 compilation units, NCCD < 6)
Rule 4:
Limit the size of Java files (700 LOC is a reasonable value)
Rule 5:
Limit the cyclomatic complexity of methods (e.g. 15)
Rule 6:
Limit the size of a Java package (e.g. less than 50 types)

You have won the heart of the princess
after your were able to calm the dragon of

complexity by following the five golden
rules

20:46 © 2005-2008, hello2morrow 20

Awards and nominations

Second prize of Jax innovation award in April 2007
Nomination for European ICT prize 2007
Awarded as most exciting innovation on Systems 2005

20:46 © 2005-2008, hello2morrow 21

Some of our Customers and Partners

Accenture
BearingPoint
Electronic Arts
Commerzbank
PlanetHome
Teambank

Sanofi-Aventis
Austrian National Bank
French Army
Credit Suisse
Daimler
Austrian Environment Agency

20:46 © 2005-2008, hello2morrow 22

Teambank
T-Systems
IBM Global Services
eBay Motors
Société Générale AM
Gemalto
Farm Credit Canada
University of Michigan

Austrian Environment Agency
Unilog
Géndarmerie Nationale (France)
Volkswagen
Austrian Government
Siemens
Business Objects
ImmobilienScout 24

Your questions…

Download free architecture rules white paper from:

www.hello2morrow.com

20:46 © 2005-2008, hello2morrow 23

My email address:

a.zitzewitz@hello2morrow.com

