
1 Copyright © 2008 Brian Goetz

From Concurrent to Parallel
Library-based parallelism in JDK 7

Brian Goetz

Sr. Staff Engineer, Sun Microsystems
brian.goetz@sun.com

This material is protected by
copyright and is licensed only for

use in connection with specific
presentations or training

engagements. For permission to
use, please contact

brian@briangoetz.com

2 Copyright © 2008 Brian Goetz

JDK 5.0 added lots of useful classes for coarse-grained
concurrency.

Hardware trends now require us to look deeper in our
applications for latent parallelism.

The fork-join framework in JDK 7 can help.

Overview

3 Copyright © 2008 Brian Goetz

Hardware trends

As of ~2003, we stopped seeing increases in CPU clock rate
Moore’s law has not been repealed!
• Giving us more cores per chip rather

than faster cores
• Maybe even slower cores

Chart at right shows clock speed
of Intel CPU releases over time
• Exponential increase until 2003
• No increase since 2003

Result: many more programmers
become concurrent programmers
(maybe reluctantly)

4 Copyright © 2008 Brian Goetz

Hardware trends

“The free lunch is over”
• For years, we had it easy

• Always a faster machine coming out in a few months

• Can no longer just buy a new machine and have our program run faster
• Even true of many so-called concurrent programs!

Challenge #1: decomposing your application into units of
work that can be executed concurrently
Challenge #2: Continuing to meet challenge #1 as processor
counts increase
• Even so-called scalable programs often run into scaling limits just by

doubling the number of available CPUs
• Need coding techniques that parallelize efficiently across a wide range

of processor counts

5 Copyright © 2008 Brian Goetz

Hardware trends

Primary goal of using threads has always been to achieve
better CPU utilization
• But those hardware guys just keep raising the bar

In the old days – only one CPU
• Threads were largely about asynchrony

• Utilization improved by doing other work during I/O operations

More recently – handful (or a few handfuls) of cores
• Coarse-grained parallelism usually enough for reasonable utilization

• Application-level requests made reasonable task boundaries
• Thread pools were a reasonable scheduling mechanism

Soon – all the cores you can eat
• May not be enough concurrent user requests to keep CPUs busy
• May need to dig deeper to find latent parallelism
• Shared work queues become a bottleneck

6 Copyright © 2008 Brian Goetz

Hardware trends drive software trends

Languages, libraries, and frameworks shape how we program
• All languages are Turing-complete, but…the programs we actually

write reflect the idioms of the languages and frameworks we use

Hardware shapes language, library, and framework design
• The Java language had thread support from day 1

• But early support was mostly useful for asynchrony, not concurrency
• Which was just about right for the hardware of the day

As MP systems became cheaper, platform evolved better
library support for coarse-grained concurrency (JDK 5)
• Principal user challenge was identifying reasonable task boundaries

Programmers now need to exploit fine-grained parallelism
• Better library support will help!
• May be able to borrow classical parallel programming techniques
• We need to be on the lookout for latent parallelism

7 Copyright © 2008 Brian Goetz

Finding finer-grained parallelism

User requests are often too coarse-grained a unit of work for
keeping many-core systems busy
• May not be enough concurrent requests
• Possible solution: find parallelism within existing task boundaries

Most promising candidate is sorting and searching
• Amenable to parallelization

• Sorting can be parallelized with merge sort
• Searching can be parallelized by searching sub-regions of the data in

parallel and then merging the results

• Can improve response time by using more CPUs
• May actually use more total CPU cycles, but less wall-clock time
• Response time may be more important than total CPU cost

• Human time is valuable!

8 Copyright © 2008 Brian Goetz

Finding finer-grained parallelism

Example: stages in the life of a database query
• Parsing and analysis
• Plan selection (may evaluate many candidate plans)
• I/O (already reasonably parallelized)
• Post-processing (filtering, sorting, aggregation)

• SELECT first, last FROM Names ORDER BY last, first
• SELECT SUM(amount) FROM Orders
• SELECT student, AVG(grade) as avg FROM Tests

GROUP BY student
HAVING avg > 3.5

Plan selection and post-processing phases are CPU-intensive
• Could be sped up with more parallelism

9 Copyright © 2008 Brian Goetz

Running example: select-max

Simplified example: find the largest element in a list
• O(n) problem
• Obvious sequential solution: iterate the elements

• For very small lists the sequential solution is obviously fine
• For larger lists a parallel solution will clearly win

• Though still O(n)
class MaxProblem {

final int[] nums;
final int start, end, size;

public int solveSequentially() {
int max = Integer.MIN_VALUE;
for (int i=start; i<end; i++)

max = Math.max(max, nums[i]);
return max;

}

public MaxProblem subproblem(int subStart, int subEnd) {
return new MaxProblem(nums, start+subStart, start+subEnd);

}
}

10 Copyright © 2008 Brian Goetz

First attempt: Executor+Future

We can divide the problem into N disjoint subproblems and
solve them independently
• Then compute the maximum of the result of all the subproblems
• Can solve the subproblems concurrently with invokeAll()

Collection<Callable<Integer>> tasks = ...
for (int i=0; i<N; i++)

tasks.add(makeCallableForSubproblem(problem, N, i));
List<Future<Integer>> results = executor.invokeAll(tasks);
int max = -Integer.MAX_VALUE;
for (Future<Integer> result : results)

max = Math.max(max, result.get());

11 Copyright © 2008 Brian Goetz

First attempt: Executor+Future

A reasonable choice of N is Runtime.availableProcessors()
• Will prevent threads from competing with each other for CPU cycles
• Problem is “embarassingly parallel”

But this approach has several inherent scalability limits
• Shared work queue in Executor eventually becomes a bottleneck
• If some subtasks finish faster than others, may not get ideal utilization

• Can address by using smaller subproblems
• But this increases contention costs

Code is clunky!
• Subproblem extraction prone to fencepost errors
• Find-maximum loop duplicated

Clunky code => people won’t bother with it

12 Copyright © 2008 Brian Goetz

Parallelization technique: divide-and-conquer

Divide-and-conquer breaks down a problem into subproblems,
solves the subproblems, and combines the result
Example: merge sort
• Divide the data set into pieces
• Sort the pieces
• Merge the results
• Result is still O(n log n), but subproblems can be solved in parallel

• Parallelizes fairly efficiently – subproblems operate on disjoint data

Divide-and-conquer applies this process recursively
• Until subproblems are so small that sequential solution is faster
• Scales well – can keep many CPUs busy

13 Copyright © 2008 Brian Goetz

Divide-and-conquer

Divide-and-conquer algorithms take this general form
Result solve(Problem problem) {

if (problem.size < SEQUENTIAL_THRESHOLD)
return problem.solveSequentially();

else {
Result left, right;
INVOKE-IN-PARALLEL {

left = solve(problem.extractLeftHalf());
right = solve(problem.extractRightHalf());

}
return combine(left, right);

}
}

The invoke-in-parallel step waits for both halves to complete
• Then performs the combination step

14 Copyright © 2008 Brian Goetz

Fork-join parallelism

The key to implementing divide-and-conquer is the invoke-in-
parallel operation
• Create two or more new tasks (fork)
• Suspend the current task until the new tasks complete (join)

Naïve implementation creates a new thread for each task
• Invoke Thread() constructor for the fork operation
• Thread.join() for the join operation
• Don’t actually want to do it this way

• Thread creation is expensive
• Requires O(log n) idle threads

Of course, non-naïve implementations are possible
• Package java.util.concurrent.forkjoin proposed for JDK 7 offers one
• For now, download package jsr166y from

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

15 Copyright © 2008 Brian Goetz

Solving select-max with fork-join

The RecursiveAction class in the fork-join framework is ideal
for representing divide-and-conqure solutions
class MaxSolver extends RecursiveAction {

private final MaxProblem problem;
int result;

protected void compute() {
if (problem.size < THRESHOLD)

result = problem.solveSequentially();
else {

int m = problem.size / 2;
MaxSolver left, right;
left = new MaxSolver(problem.subproblem(0, m));
right = new MaxSolver(problem.subproblem(m,

problem.size));
forkJoin(left, right);
result = Math.max(left.result, right.result);

}
}

}

ForkJoinExecutor pool = new ForkJoinPool(nThreads);
MaxSolver solver = new MaxSolver(problem);
pool.invoke(solver);

16 Copyright © 2008 Brian Goetz

Fork-join example

Example implements RecursiveAction
• The forkJoin() method creates two new tasks and waits for them
• ForkJoinPool is like an Executor, but optimized for fork-join tasks

• Waiting for other pool tasks risks thread-starvation deadlock in standard
executors

Implementation can avoid copying elements
• Different subproblems work on disjoint portions of the data

• Which also happens to have good cache locality
• Data copying would impose a significant cost

• In this case, data is read-only for the entirety of the operation

Other useful task base classes
• RecursiveTask for result-bearing tasks
• AsyncAction for tasks with asynchronous completion
• CyclicAction for parallel iterative tasks

17 Copyright © 2008 Brian Goetz

Performance considerations

How low should the sequential threshold be set?
Two competing performance forces
• Making tasks smaller enhances parallelism

• Increased load balancing, improves throughput

• Making tasks larger reduces coordination overhead
• Must create, enqueue, dequeue, execute, and wait for tasks

Fork-join task framework is designed to minimize per-task
overhead for compute-intensive tasks
• The lower the task-management overhead, the lower the sequential

threshold can be set
• Traditional Executor framework works better for tasks that have a mix

of CPU and I/O activity

18 Copyright © 2008 Brian Goetz

Performance considerations

Fork-join offers a portable way to express many parallel
algorithms
• Code is independent of the execution topology
• Reasonably efficient for a wide range of CPU counts
• Library manages the parallelism

• Frequently no additional synchronization is required

Still must set number of threads in fork-join pool
• Runtime.availableProcessors() is usually the best choice

• Larger numbers won’t hurt much, smaller numbers will limit parallelism

Must also determine a reasonable sequential threshold
• Done by experimentation and profiling
• Mostly a matter of avoiding “way too big” and “way too small”

19 Copyright © 2008 Brian Goetz

Performance considerations

Table shows speedup relative to sequential for various
platforms and thresholds for 500K run (bigger is better)
• Pool size always equals number of HW threads

• No code differences across HW platforms

• Can’t expect perfect scaling, because framework and scheduling
introduce some overhead

Reasonable speedups for wide range of threshold
Threshold=50Threshold=500Threshold=5KThreshold=50KThreshold=500k

6.4915.3417.2110.46.988-core Niagara
(32)

2.034.535.735.291.08-way Opteron
(8)

.432.223.23.02.88Dual Xeon HT (4)

20 Copyright © 2008 Brian Goetz

Under the hood

Already discussed naïve implementation – use Thread
• Problem is it uses a lot of threads, and they mostly just wait around

Executor is similarly a bad choice
• Likely deadlock if pool is bounded – standard thread pools are designed

for independent tasks
• Standard thread pools can have high contention for task queue and

other data structures when used with fine-grained tasks

An ideal solution minimizes
• Context switch overhead between worker threads

• Have as many threads as hardware threads, and keep them busy

• Contention for data structures
• Avoid a common task queue

21 Copyright © 2008 Brian Goetz

Work stealing

Fork-join framework is implemented using work-stealing
• Create a limited number of worker threads
• Each worker thread maintains a private double-ended work queue

(deque)
• Optimized implementation, not the standard JUC deques

• When forking, worker pushes new task at the head of its deque
• When waiting or idle, worker pops a task off the head of its deque and

executes it
• Instead of sleeping

• If worker’s deque is empty, steals an element off the tail of the deque
of another randomly chosen worker

22 Copyright © 2008 Brian Goetz

Work stealing

Work-stealing is efficient – introduces little per-task overhead
Reduced contention compared to shared work queue
• No contention ever for head

• Because only the owner accesses the head

• No contention ever between head and tail access
• Because good queue algorithms enable this

• Almost never contention for tail
• Because stealing is infrequent, and steal collisions more so

Stealing is infrequent
• Workers put and retrieve items from their queue in LIFO order
• Size of work items gets smaller as problem is divided
• So when a thread steals from the tail of another worker’s queue, it

generally steals a big chunk!
• This will keep it from having to steal again for a while

23 Copyright © 2008 Brian Goetz

Work stealing

When pool.invoke() is called, task is placed on a random
deque
• That worker executes the task

• Usually just pushes two more tasks onto its deque – very fast
• Starts on one of the subtasks

• Soon some other worker steals the other top-level subtask
• Pretty soon, most of the forking is done, and the tasks are distributed

among the various work queues
• Now the workers start on the meaty (sequential) subtasks

• If work is unequally distributed, corrected via stealing

Result: reasonable load balancing
• With no central coordination
• With little scheduling overhead
• With minimal synchronization costs

• Because synchronization is almost never contended

24 Copyright © 2008 Brian Goetz

Example: Traversing and marking a graph

Extend LinkedAsyncAction instead of RecursiveAction
• LinkedAsyncAction manages parent-child relationship
• Finish method means “wait for all my children”

• Example uses AtomicBoolean to safely manage shared mark bits

class GraphVisitor extends LinkedAsyncAction {
GraphVisitor(GraphVisitor parent, Node node) {

super(parent); this.node = node;
}
protected void compute() {

if (node.mark.compareAndSet(false, true)) {
for (Edge e : node.edges()) {

Node dest = e.getDestination();
if (!dest.mark.get())

new GraphVisitor(this, dest).fork();
}
visit(node);

}
finish();

}
}

25 Copyright © 2008 Brian Goetz

Other applications

Fork-join can be used for parallelizing many types of problems
• Matrix operations

• Multiplication, LU decomposition, etc

• Finite-element modeling
• Numerical integration
• Game playing

• Move generation
• Move evaluation
• Alpha-beta pruning

26 Copyright © 2008 Brian Goetz

Taking it up a level

Still lots of “boilerplate” code in fork-join tasks
• Decomposing into subproblems, choosing between recursive and

sequential execution, managing subtasks

Would be nicer to specify parallel aggregate operations at a
higher abstraction level
• Enter ParallelArray

The ParallelArray classes let you declaratively specify
aggregate operations on data arrays
• And uses fork-join to efficiently execute on the available hardware

Versions for primitives and objects
• ParallelArray<T>, ParallelLongArray, etc

Resembles a restricted, in-memory, parallel DBMS
• Less powerful than LinQ, but designed for parallelization with a

transparent cost model

27 Copyright © 2008 Brian Goetz

ParallelArray

Coding select-max with ParallelArray is trivial
ParallelLongArray pa

= ParallelLongArray.createUsingHandoff(array, fjPool);
long max = pa.max();

ParallelArray framework automates fork-join decomposition
for operations on arrays
• Supports filtering, element mapping, and combination across multiple

parallel arrays
• Batches all operations into a single parallel step

28 Copyright © 2008 Brian Goetz

ParallelArray

Slightly less trivial example: select highest GPA of students
graduating this year
class Student {

String name;
int graduationYear;
double gpa;

}
ParallelArray<Student> students

= ParallelArray.createUsingHandoff(studentsArray, forkJoinPool);
double highestGpa = students.withFilter(graduatesThisYear)

.withMapping(selectGpa)

.max();
Ops.Predicate<Student> graduatesThisYear = new Ops.Predicate<Student>() {

public boolean op(Student s) {
return s.graduationYear == 2008;

}
};
Ops.ObjectToDouble<Student> selectGpa = new Ops.ObjectToDouble<Student>()
{

public double op(Student student) {
return student.gpa;

}
};

29 Copyright © 2008 Brian Goetz

ParallelArray

We specify three operations – filter, map, aggregate
• Uses filtering to select students graduating this year
• Uses mapping to select each student’s GPA
• Applies max() to result

Query looks imperative, but in fact is more like declarative
• The actual work isn’t done until the aggregation step (max())

• Other methods merely set up the “query”
• Filtering and mapping calls just set up lightweight descriptors

30 Copyright © 2008 Brian Goetz

ParallelArray

There are some restrictions
• Filtering must precede mapping
• Mapping must precede aggregation
• Must have an aggregation or replacement step

• Because that’s where the work is done
• Can use all() method to return a ParallelArray containing all filtered rows

These restrictions are largely in aid of maintaining a
transparent cost model
• SQL let’s you express arbitrarily complicated queries in a single

statement, but it is harder to predict their performance
• ParallelArray makes it much more obvious how much the query is

going to cost

31 Copyright © 2008 Brian Goetz

ParallelArray example: mean and variance

We can use ParallelArray to sample, compute mean and
variance in three parallel operations
• Separate operations needed because of dataflow dependencies

ParallelDoubleArray data
= ParallelDoubleArray.create(SIZE, forkJoinPool)

.replaceWithGeneratedValue(getSample);
final double mean = data.sum() / SIZE;
double variance = data

.withMapping(new Ops.DoubleOp() {
public double op(double v) {

return (v-mean) * (v-mean);
}

})
.sum() / SIZE;

32 Copyright © 2008 Brian Goetz

ParallelArray

Basic operations supported by ParallelArray
• Filtering – select a subset of the elements

• Can specify multiple filters
• Binary search supported on sorted parallel arrays

• Mapping – convert selected elements to another form
• Such as selecting a student’s GPA

• Replacement – create a new ParallelArray derived from the original
• Sorting, running accumulation

• Aggregation – combine all values into a single value
• Maxima, minima, sum, average
• General-purpose reduce() method

• Application – perform an action for each selected element

33 Copyright © 2008 Brian Goetz

Combining multiple ParallelArrays

Operations can combine multiple parallel ParallelArrays
• Compute min(a[i] + b[i] + c[i])
// a, b, and c are ParallelLongArrays
long minSum = a.withMapping(CommonOps.longAdder(), b)

.withMapping(CommonOps.longAdder(), c)

.min();

• CommonOps has combiners for arithmetic operations, max and min,
etc

• This form of withMapping uses the combiner to combine the element
of the receiver array with the corresponding element of the other array

34 Copyright © 2008 Brian Goetz

Connection with closures

One of the features proposed for JDK 7 is closures
• One goal of closures is to reduce redundant boilerplate code
• Ugliest part of ParallelArray is the helper methods like selectGpa()
• These would go away with closures

double highestGpa = students
.withFilter({ Student s => (s.graduationYear == THIS_YEAR) })
.withMapping({ Student s => s.gpa })
.max();

With closures, API could be written in terms of function types
instead of named types
• Ops.Predicate<T> becomes { T => boolean }
• Which might be a benefit or a disadvantage

• Names are useful

35 Copyright © 2008 Brian Goetz

From Concurrent to Parallel
Library-based parallelism in JDK 7

Brian Goetz

Sr. Staff Engineer, Sun Microsystems
brian.goetz@sun.com

This material is protected by
copyright and is licensed only for

use in connection with specific
presentations or training

engagements. For permission to
use, please contact

brian@briangoetz.com

