

From Concurrent to Parallel Library-based parallelism in JDK 7

Brian Goetz

Sr. Staff Engineer, Sun Microsystems brian.goetz@sun.com

> This material is protected by copyright and is licensed only for use in connection with specific presentations or training engagements. For permission to use, please contact brian@briangoetz.com

Overview

JDK 5.0 added lots of useful classes for coarse-grained concurrency.

Hardware trends now require us to look deeper in our applications for latent parallelism.

The fork-join framework in JDK 7 can help.

Hardware trends

- > As of ~2003, we stopped seeing increases in CPU clock rate
- Moore's law has not been repealed!
 - Giving us more cores per chip rather than faster cores
 - Maybe even slower cores
- Chart at right shows clock speed of Intel CPU releases over time
 - Exponential increase until 2003
 - No increase since 2003
- Result: many more programmers become concurrent programmers (maybe reluctantly)

Copyright © 2008 Brian Goetz

Hardware trends

- "The free lunch is over"
 - For years, we had it easy
 - Always a faster machine coming out in a few months
 - Can no longer just buy a new machine and have our program run faster
 - Even true of many so-called concurrent programs!
- Challenge #1: decomposing your application into units of work that can be executed concurrently
- Challenge #2: Continuing to meet challenge #1 as processor counts increase
 - Even so-called scalable programs often run into scaling limits just by doubling the number of available CPUs
 - Need coding techniques that parallelize efficiently across a wide range of processor counts

Hardware trends

Primary goal of using threads has always been to achieve better CPU utilization

- But those hardware guys just keep raising the bar
- In the old days only one CPU
 - Threads were largely about *asynchrony*
 - Utilization improved by doing other work during I/O operations
- More recently handful (or a few handfuls) of cores
 - Coarse-grained parallelism usually enough for reasonable utilization
 - Application-level requests made reasonable task boundaries
 - Thread pools were a reasonable scheduling mechanism
- Soon all the cores you can eat
 - May not be enough concurrent user requests to keep CPUs busy
 - May need to dig deeper to find latent parallelism
 - Shared work queues become a bottleneck

Hardware trends drive software trends

Languages, libraries, and frameworks shape how we program

- All languages are Turing-complete, but...the programs we *actually* write reflect the idioms of the languages and frameworks we use
- Hardware shapes language, library, and framework design
 - The Java language had thread support from day 1
 - But early support was mostly useful for asynchrony, not concurrency
 - Which was just about right for the hardware of the day
- As MP systems became cheaper, platform evolved better library support for *coarse-grained* concurrency (JDK 5)
 - Principal user challenge was identifying reasonable task boundaries
- Programmers now need to exploit *fine-grained* parallelism
 - Better library support will help!
 - May be able to borrow classical parallel programming techniques
 - We need to be on the lookout for latent parallelism

Finding finer-grained parallelism

- User requests are often too coarse-grained a unit of work for keeping many-core systems busy
 - May not be enough concurrent requests
 - Possible solution: find parallelism *within* existing task boundaries
- Most promising candidate is sorting and searching
 - Amenable to parallelization
 - Sorting can be parallelized with merge sort
 - Searching can be parallelized by searching sub-regions of the data in parallel and then merging the results
 - Can improve response time by using more CPUs
 - May actually use more total CPU cycles, but less wall-clock time
 - Response time may be more important than total CPU cost
 - Human time is valuable!

Finding finer-grained parallelism

Example: stages in the life of a database query

- Parsing and analysis
- Plan selection (may evaluate many candidate plans)
- I/O (already reasonably parallelized)
- Post-processing (filtering, sorting, aggregation)
 - SELECT first, last FROM Names ORDER BY last, first
 - SELECT SUM(amount) FROM Orders
 - SELECT student, AVG(grade) as avg FROM Tests GROUP BY student HAVING avg > 3.5

Plan selection and post-processing phases are CPU-intensive

Could be sped up with more parallelism

Running example: select-max

Simplified example: find the largest element in a list

- O(n) problem
- Obvious sequential solution: iterate the elements
 - For very small lists the sequential solution is obviously fine
 - For larger lists a parallel solution will clearly win

```
• Though still O(n)
class MaxProblem {
  final int[] nums;
  final int start, end, size;
  public int solveSequentially() {
    int max = Integer.MIN_VALUE;
    for (int i=start; i<end; i++)
        max = Math.max(max, nums[i]);
    return max;
  }
  public MaxProblem subproblem(int subStart, int subEnd) {
    return new MaxProblem(nums, start+subStart, start+subEnd);
  }
}
```


First attempt: Executor+Future

- We can divide the problem into N disjoint subproblems and solve them independently
 - Then compute the maximum of the result of all the subproblems
 - Can solve the subproblems concurrently with invokeAll()

```
Collection<Callable<Integer>> tasks = ...
for (int i=0; i<N; i++)
    tasks.add(makeCallableForSubproblem(problem, N, i));
List<Future<Integer>> results = executor.invokeAll(tasks);
int max = -Integer.MAX_VALUE;
for (Future<Integer> result : results)
    max = Math.max(max, result.get());
```


First attempt: Executor+Future

- > A reasonable choice of N is Runtime.availableProcessors()
 - Will prevent threads from competing with each other for CPU cycles
 - Problem is "embarassingly parallel"
- But this approach has several inherent scalability limits
 - Shared work queue in Executor eventually becomes a bottleneck
 - If some subtasks finish faster than others, may not get ideal utilization
 - Can address by using smaller subproblems
 - But this increases contention costs
- Code is clunky!
 - Subproblem extraction prone to fencepost errors
 - Find-maximum loop duplicated
- > Clunky code => people won't bother with it

Parallelization technique: divide-and-conquer

- Divide-and-conquer breaks down a problem into subproblems, solves the subproblems, and combines the result
- Example: merge sort
 - Divide the data set into pieces
 - Sort the pieces
 - Merge the results
 - Result is still *O(n log n)*, but subproblems can be solved in parallel
 - Parallelizes fairly efficiently subproblems operate on disjoint data
- Divide-and-conquer applies this process recursively
 - Until subproblems are so small that sequential solution is faster
 - Scales well can keep many CPUs busy

Divide-and-conquer

Divide-and-conquer algorithms take this general form

```
Result solve(Problem problem) {
    if (problem.size < SEQUENTIAL_THRESHOLD)
        return problem.solveSequentially();
    else {
        Result left, right;
        INVOKE-IN-PARALLEL {
            left = solve(problem.extractLeftHalf());
            right = solve(problem.extractRightHalf());
            right = solve(problem.extractRightHalf());
        }
        return combine(left, right);
    }
}</pre>
```

The invoke-in-parallel step waits for both halves to complete

Then performs the combination step

Fork-join parallelism

- The key to implementing divide-and-conquer is the invoke-inparallel operation
 - Create two or more new tasks (fork)
 - Suspend the current task until the new tasks complete (join)
- > Naïve implementation creates a new thread for each task
 - Invoke Thread() constructor for the fork operation
 - Thread.join() for the join operation
 - Don't actually want to do it this way
 - Thread creation is expensive
 - Requires O(log n) idle threads
- > Of course, non-naïve implementations are possible
 - Package java.util.concurrent.forkjoin proposed for JDK 7 offers one
 - For now, download package jsr166y from http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

Solving select-max with fork-join

```
The RecursiveAction class in the fork-join framework is ideal
  for representing divide-and-conqure solutions
  class MaxSolver extends RecursiveAction {
      private final MaxProblem problem;
      int result;
      protected void compute() {
          if (problem.size < THRESHOLD)
              result = problem.solveSequentially();
          else
              int m = problem.size / 2;
              MaxSolver left, right;
              left = new MaxSolver(problem.subproblem(0, m));
              right = new MaxSolver(problem.subproblem(m,
                                    problem.size));
              forkJoin(left, right);
              result = Math.max(left.result, right.result);
          }
      }
  ForkJoinExecutor pool = new ForkJoinPool(nThreads);
  MaxSolver solver = new MaxSolver(problem);
  pool.invoke(solver);
```


Fork-join example

Example implements RecursiveAction

- The forkJoin() method creates two new tasks and waits for them
- ForkJoinPool is like an Executor, but optimized for fork-join tasks
 - Waiting for other pool tasks risks *thread-starvation deadlock* in standard executors
- Implementation can avoid copying elements
 - Different subproblems work on disjoint portions of the data
 - Which also happens to have good cache locality
 - Data copying would impose a significant cost
 - In this case, data is read-only for the entirety of the operation
- Other useful task base classes
 - RecursiveTask for result-bearing tasks
 - AsyncAction for tasks with asynchronous completion
 - CyclicAction for parallel iterative tasks

Performance considerations

- > How low should the sequential threshold be set?
- > Two competing performance forces
 - Making tasks smaller enhances parallelism
 - Increased load balancing, improves throughput
 - Making tasks larger reduces coordination overhead
 - Must create, enqueue, dequeue, execute, and wait for tasks
- Fork-join task framework is designed to minimize per-task overhead for *compute-intensive* tasks
 - The lower the task-management overhead, the lower the sequential threshold can be set
 - Traditional Executor framework works better for tasks that have a mix of CPU and I/O activity

Performance considerations

- Fork-join offers a *portable* way to express many parallel algorithms
 - Code is independent of the execution topology
 - Reasonably efficient for a wide range of CPU counts
 - Library manages the parallelism
 - Frequently no additional synchronization is required
- Still must set number of threads in fork-join pool
 - Runtime.availableProcessors() is usually the best choice
 - Larger numbers won't hurt much, smaller numbers will limit parallelism
- Must also determine a reasonable sequential threshold
 - Done by experimentation and profiling
 - Mostly a matter of avoiding "way too big" and "way too small"

Performance considerations

- Table shows speedup relative to sequential for various platforms and thresholds for 500K run (bigger is better)
 - Pool size always equals number of HW threads
 - No code differences across HW platforms
 - Can't expect perfect scaling, because framework and scheduling introduce some overhead
- Reasonable speedups for wide range of threshold

	Threshold=500k	Threshold=50K	Threshold=5K	Threshold=500	Threshold=50
Dual Xeon HT (4)	.88	3.02	3.2	2.22	.43
8-way Opteron (8)	1.0	5.29	5.73	4.53	2.03
8-core Niagara (32)	.98	10.46	17.21	15.34	6.49

Under the hood

- > Already discussed naïve implementation use Thread
 - Problem is it uses a lot of threads, and they mostly just wait around
- Executor is similarly a bad choice
 - Likely deadlock if pool is bounded standard thread pools are designed for *independent* tasks
 - Standard thread pools can have high contention for task queue and other data structures when used with fine-grained tasks

An ideal solution minimizes

- Context switch overhead between worker threads
 - Have as many threads as hardware threads, and keep them busy
- Contention for data structures
 - Avoid a common task queue

Work stealing

Fork-join framework is implemented using work-stealing

- Create a limited number of worker threads
- Each worker thread maintains a private double-ended work queue (deque)
 - Optimized implementation, not the standard JUC deques
- When forking, worker pushes new task at the *head* of its deque
- When waiting or idle, worker pops a task off the *head* of its deque and executes it
 - Instead of sleeping
- If worker's deque is empty, steals an element off the *tail* of the deque of another randomly chosen worker

Work stealing

- Work-stealing is efficient introduces little per-task overhead
- Reduced contention compared to shared work queue
 - No contention ever for head
 - Because only the owner accesses the head
 - No contention ever between head and tail access
 - Because good queue algorithms enable this
 - Almost never contention for tail
 - Because stealing is infrequent, and steal collisions more so
- Stealing is infrequent
 - Workers put and retrieve items from their queue in LIFO order
 - Size of work items gets smaller as problem is divided
 - So when a thread steals from the tail of another worker's queue, it generally steals a big chunk!
 - This will keep it from having to steal again for a while

Work stealing

- When pool.invoke() is called, task is placed on a random deque
 - That worker executes the task
 - Usually just pushes two more tasks onto its deque very fast
 - Starts on one of the subtasks
 - Soon some other worker steals the other top-level subtask
 - Pretty soon, most of the forking is done, and the tasks are distributed among the various work queues
 - Now the workers start on the meaty (sequential) subtasks
 - If work is unequally distributed, corrected via stealing
- Result: reasonable load balancing
 - With no central coordination
 - With little scheduling overhead
 - With minimal synchronization costs
 - Because synchronization is almost never contended

Example: Traversing and marking a graph

- Extend LinkedAsyncAction instead of RecursiveAction
 - LinkedAsyncAction manages parent-child relationship
 - Finish method means "wait for all my children"
 - Example uses AtomicBoolean to safely manage shared mark bits

Other applications

Fork-join can be used for parallelizing many types of problems

- Matrix operations
 - Multiplication, LU decomposition, etc
- Finite-element modeling
- Numerical integration
- Game playing
 - Move generation
 - Move evaluation
 - Alpha-beta pruning

Taking it up a level

- Still lots of "boilerplate" code in fork-join tasks
 - Decomposing into subproblems, choosing between recursive and sequential execution, managing subtasks
- Would be nicer to specify parallel aggregate operations at a higher abstraction level
 - Enter *ParallelArray*
- The ParallelArray classes let you declaratively specify aggregate operations on data arrays
 - And uses fork-join to efficiently execute on the available hardware
- Versions for primitives and objects
 - ParallelArray<T>, ParallelLongArray, etc
- Resembles a restricted, in-memory, parallel DBMS
 - Less powerful than LinQ, but designed for parallelization with a transparent cost model

Coding select-max with ParallelArray is trivial

```
ParallelLongArray pa
```

```
= ParallelLongArray.createUsingHandoff(array, fjPool);
```

```
long max = pa.max();
```

ParallelArray framework automates fork-join decomposition for operations on arrays

- Supports filtering, element mapping, and combination across multiple parallel arrays
- Batches all operations into a single parallel step

Slightly less trivial example: select highest GPA of students graduating this year

```
class Student {
    String name;
    int graduationYear;
    double gpa;
ParallelArray<Student> students
    = ParallelArray.createUsingHandoff(studentsArray, forkJoinPool);
double highestGpa = students.withFilter(graduatesThisYear)
                            .withMapping(selectGpa)
                             .max();
Ops.Predicate<Student> graduatesThisYear = new Ops.Predicate<Student>() {
    public boolean op(Student s) {
        return s.graduationYear == 2008;
};
Ops.ObjectToDouble<Student> selectGpa = new Ops.ObjectToDouble<Student>()
    public double op(Student student) {
        return student.gpa;
};
```


> We specify three operations – filter, map, aggregate

- Uses filtering to select students graduating this year
- Uses mapping to select each student's GPA
- Applies max() to result

> Query *looks* imperative, but in fact is more like declarative

- The actual work isn't done until the aggregation step (max())
 - Other methods merely set up the "query"
 - Filtering and mapping calls just set up lightweight descriptors

There are some restrictions

- Filtering must precede mapping
- Mapping must precede aggregation
- Must have an aggregation or replacement step
 - Because that's where the work is done
 - Can use all() method to return a ParallelArray containing all filtered rows
- These restrictions are largely in aid of maintaining a transparent cost model
 - SQL let's you express arbitrarily complicated queries in a single statement, but it is harder to predict their performance
 - ParallelArray makes it much more obvious how much the query is going to cost

ParallelArray example: mean and variance

- We can use ParallelArray to sample, compute mean and variance in three parallel operations
 - Separate operations needed because of dataflow dependencies

Basic operations supported by ParallelArray

- Filtering select a subset of the elements
 - Can specify multiple filters
 - Binary search supported on sorted parallel arrays
- Mapping convert selected elements to another form
 - Such as selecting a student's GPA
- Replacement create a new ParallelArray derived from the original
 - Sorting, running accumulation
- Aggregation combine all values into a single value
 - Maxima, minima, sum, average
 - General-purpose reduce() method
- Application perform an action for each selected element

Combining multiple ParallelArrays

- > Operations can combine multiple parallel ParallelArrays
 - Compute min(a[i] + b[i] + c[i])

- CommonOps has combiners for arithmetic operations, max and min, etc
- This form of with Mapping uses the combiner to combine the element of the receiver array with the corresponding element of the other array

Connection with closures

One of the features proposed for JDK 7 is *closures*

- One goal of closures is to reduce redundant boilerplate code
- Ugliest part of ParallelArray is the helper methods like selectGpa()

```
double highestGpa = students
.withFilter( { Student s => (s.graduationYear == THIS_YEAR) } )
.withMapping( { Student s => s.gpa } )
.max();
```

- With closures, API could be written in terms of function types instead of named types
 - Ops.Predicate<T> becomes { T => boolean }
 - Which might be a benefit or a disadvantage
 - Names are useful

From Concurrent to Parallel Library-based parallelism in JDK 7

Brian Goetz

Sr. Staff Engineer, Sun Microsystems brian.goetz@sun.com

> This material is protected by copyright and is licensed only for use in connection with specific presentations or training engagements. For permission to use, please contact brian@briangoetz.com