
Gallio: Crafting a Toolchain

Jeff Brown
jeff.brown@gmail.com

About Me

� Jeff Brown
� Lead Software Engineer at Yellowpages.com

� Creator of Gallio Open Source Project
� Lead of MbUnit Open Source Project
� Coding is fun!

Outline

� Gallio and MbUnit
� Demo
� What is a Toolchain?
� Implementation Challenges
� Under the Hood
� Roadmap
� Questions

Gallio

� Gallio is a neutral test automation platform.
– Open Source. (Apache License)

Microsoft .Net platform.– Microsoft .Net platform.
– Aims to provide great tools integration for many

different test frameworks.
– Started in October 2007 as a spinoff from MbUnit.

� Current release: v3.0.5.
� Website: www.gallio.org

Gallio

� Vision: Gallio will be the foundation for a rich
suite of interoperable tools.

� Test frameworks.� Test frameworks.
� Test runners.
� Test case managers.
� Test generators.
� Test reports and analytics.
� Test editors and IDE integration.
� Continuous integration facilities.

Gallio

� Lingua franca for test tools.
– Common object model.
– Support for many different workflows.– Support for many different workflows.
– Extensible.
– Evolving.
– Owned by the community.

� Objective: To unite, not to control.

Gallio

� Tools support
– Frameworks: CSUnit, MbUnit v2, MbUnit v3, MSTest,

NBehave, NUnit, xUnit.netNBehave, NUnit, xUnit.net
– Runners: GUI (Icarus), Command-line (Echo),

TestDriven.Net, ReSharper, Visual Studio Test Tools,
MSBuild, NAnt, PowerShell.

– Other: CruiseControl.Net, TeamCity, TypeMock, NCover,
Pex, AutoCAD

� 3rd party Contributions: DXCore runner (RedGreen),
MSpec, and more…

Gallio

� Trivia
– Original code name provided by Andrew Stopford

was to be “Galileo” but it was corrupted to “Gallio” was to be “Galileo” but it was corrupted to “Gallio”
due to a misspelling in an early email thread.

MbUnit

� MbUnit is a test automation framework.
– Open Source. (Apache License)

Aims to provide a powerful framework for unit – Aims to provide a powerful framework for unit
testing and integration testing for .Net.

– Started by Jonathan “Peli” de Halleux in 2004.
– Complete rewrite for MbUnit v3 in 2007/2008.

� Current release: MbUnit v3.0.5.
� Website: www.mbunit.com

MbUnit

� MbUnit is mostly NUnit compatible but
improves on it in many ways:
– Focus on usability and clear reporting.– Focus on usability and clear reporting.
– Data-driven testing. (eg. [Row]-test, pairwise and

combinatorial testing)
– Supports unit testing and integration testing.
– Easily extensible by creating new attributes.
– Dynamic test structure.

MbUnit

� Trivia:
– Original name was GUnit but that name turned

out to already be taken.out to already be taken.
– Model based Unit Testing Framework.

– Or if you prefer…
� Much better Unit Testing Framework. ;-)

Gallio and MbUnit Demo

What is a Toolchain?

� A collection of tools that work together.

� Did you notice how many different
interactions there were between tools in the
demo?
– A lot.

Implementation Challenges

� Test code is hostile!
– By definition, subject under test may contain

bugs.bugs.
– Could kill the test process due to stack overflows,

out of memory, and other side-effects.

� Test code must be isolated.
– Run in separate process, ideally.
– Run in separate AppDomain, at a minimum.
– Be prepared to abort the test run.

Implementation Challenges

� Test frameworks define tests differently.
– xUnit.Net: A fixture is just a .Net class, a test is

just a .Net method.just a .Net method.
– NUnit: Tests are declared statically using

metadata in a .Net assembly.
– MbUnit: Tests are declared statically but data-

driven test instances are generated dynamically.
– RSpec: Tests are generated dynamically when a

test script is evaluated.

Implementation Challenges

� Test frameworks define tests differently…
– Some use XML.
– Some use databases.– Some use databases.
– Some use collections of standalone programs.
– Some generate tests on-the-fly from a model.
– etc...

� Test representation must be flexible.
� Test platform must not be “opinionated” though it

must support frameworks that are.

Implementation Challenges

� Test frameworks make assumptions
– Working directory contains test assembly.
– Application base directory is same as working directory.– Application base directory is same as working directory.
– Can resolve references to test assembly dependencies.
– If a test assembly has an associated configuration file, it is

loaded.
– x86-only tests run in x86 mode on x64.
– Full trust security model.

Implementation Challenges

� Extensibility model mismatches.
– ReSharper wants plugins to be installed in

C:\Program Files\JetBrains\ReSharper\...C:\Program Files\JetBrains\ReSharper\...
– Visual Studio Test Tools must be able to load

custom test types from GAC or from Visual Studio
Private Assemblies.

– TestDriven.Net can load a test framework
assembly from anywhere but it might not be able
to resolve the references of that assembly.

Implementation Challenges

� Test platform must be prepared to establish
its own private hosting environment
regardless of how it is loaded by 3rd party regardless of how it is loaded by 3rd party
tools.

Implementation Challenges

� Test hosts make assumptions
– Everything is running in a single process (for

debuggers and code profilers).debuggers and code profilers).
– Test code does not have lasting side effects upon

the host.
– Test structure:

� Dynamic metadata rich hierarchy (Gallio)
� Static hierarchy rooted at project (ReSharper)
� Static flat list (Visual Studio)
� Ignored and not reported in results (TestDriven.net)

Under the Hood

Under the Hood: Test Model

� At test exploration time...
– All we have is static metadata.

Some data may not be available.– Some data may not be available.
– Might not be able to execute code.
– Create a ITest Tree to describe exploration.

� At test execution time…
– We have all the information.
– Create a ITestStep Tree to describe execution.

Under the Hood: Test Model

� Tests have:
– Unique stable identifier.
– Name.
– Metadata.– Metadata.

� Kind: Namespace, Fixture, Suite, Test, etc…
� Description.
� Documentation.
� Arbitrary key/value pairs.

– Children.
– Dependencies.
– Ordering.
– Parameters.

Under the Hood: Test Model

� Caveats:
– We might define new tests at runtime.

Tests might have dynamic substructure– Tests might have dynamic substructure
� eg. Instances of parameterized tests.

– Test runners cannot assume static and dynamic
test structure are the same (but many do..)

Under the Hood: Test Log

� Want to report test results uniformly.
� Simple document format.
� Primitives:� Primitives:

– Streams (Containers)
� Failures, Warnings, Console Output, etc...

– Sections (Delimiters)
– Markers (Embedded Metadata)

� Diffs, Links, Highlights, Stack Traces
– Text
– Attachments

Under the Hood: Reflection

� Tests can be explored before compilation!
– JetBrains ReSharper™ unit test runner

� Abstract reflection layer� Abstract reflection layer
– Native .Net reflection wrappers.
– ReSharper Code Model wrappers. (x2)
– Visual Studio Code Model wrappers.
– Cecil wrappers.

� Enables test explorer to be polymorphic.

Under the Hood: Reflection

� Abstract Reflection API
– IReflectionPolicy
– ICodeElementInfo

� IAssemblyInfo, IAttributeInfo, IConstructorInfo, IEventInfo,
IFieldInfo, IGenericParameterInfo, IMemberInfo,
IMethodInfo, INamespaceInfo, IParameterInfo, ITypeInfo

– CodeLocation, CodeReference
– Access to Xml documentation comments.

� Unexpected bonus: Uniformity
– IFunctionInfo: constructor or method.
– ISlotInfo: field, property, parameter, or generic parameter.

Under the Hood:
Pattern Test Framework

� Reflection-based frameworks are common.
� Demand for different syntaxes: BDD, etc…
� Typical solution:� Typical solution:

– Syntax adapters: wrap another test framework.

� Better solution:
– Reuse code test exploration strategy.
– Define completely custom syntax.
– Better user experience and branding potential.

Under the Hood:
Pattern Test Framework

� IPattern
– Basic compositional unit of structure in a test.

� “Abstract syntax”� “Abstract syntax”

– Three basic methods:
� IsPrimary: Does this pattern declare something new?
� Consume: If this pattern is primary, produce something

new from a given code element.
� Process: Enrich something else created by another

pattern using a given code element.

Under the Hood:
Pattern Test Framework

� [PatternAttribute]
– Associates a pattern with a code element.

Most MbUnit v3 attributes are Pattern Attributes.– Most MbUnit v3 attributes are Pattern Attributes.
� You can make a custom framework the same way.

Under the Hood:
Pattern Test Framework

� MbUnit v3 Examples:
– [Test]: Primary pattern that creates a new tests.
– [SetUp]: Primary pattern that registers the – [SetUp]: Primary pattern that registers the

associated method in the “setup chain” of the
containing fixture.

– [Description]: Secondary pattern that adds
descriptive metadata to a test or fixture.

– [Row]: Secondary pattern that adds a new data
source to a test or fixture.

Under the Hood:
Pattern Test Framework

� Might help you write a new test framework…
– Reflection-based test exploration.

General-purpose test execution engine.– General-purpose test execution engine.
– Data binding.
– etc...

� Or forget all of this and build it from scratch…
– Just implement ITestFramework, ITestExplorer,

and ITestController to explore and execute tests.

Lessons Learned

� Beware of hidden assumptions.
– All test hosts are a little different.

Protect the test frameworks and tools from – Protect the test frameworks and tools from
unanticipated variations in hosting.

� Version independence is mandatory.

Lessons Learned

� Consolidation of the tool chain is very useful.
� This is a lot harder than it looks!

– If you plan to write your own test framework,
consider using Gallio as the underlying platform.

Roadmap

� v3.0: First spike.
– Self-host.

Integrate with many different environments.– Integrate with many different environments.
– Challenge assumptions. Gain experience.

� v3.1: Generalize and consolidate.
– Support non-.Net languages and workflows.
– Simplify extensibility contracts.
– Performance.

Gallio Futures

� Gallio is the nucleus of a growing suite of
interoperable test tools.
– Ambience: A database for persistent test data.– Ambience: A database for persistent test data.
– Archimedes: An automation test case manager

including distributed test agent and test data
warehouse.

� Dynamic languages, scripting languages,
test DSLs and non .Net frameworks in v3.1.

MbUnit Futures

� More built-in assertions.
� Provide “mixins” to assist with integration of

3rd party libraries such as Rhino.Mocks, 3rd party libraries such as Rhino.Mocks,
Selenium and WatiN.

� ASP.Net hosting.
� .Net Framework 4.0 extensions.

Ongoing and Upcoming Projects

� Gallio Book
� Mono Support
� Test Case Manager (Archimedes)
� Test Data Warehouse
� Distributed Test Runner
� Modeling Language for Integration Tests

Volunteers Wanted!

� What do you want to do?
– Build your own stuff using Gallio.

Add new stuff to Gallio itself.– Add new stuff to Gallio itself.
– Promote Gallio.
– Offer feedback and suggestions.
– Help us write the Gallio Book.

Questions?

