Gallio: Crafting a Toolchain

Jeff Brown
jeff.borown@gmail.com



About Me
« /]

e Jeff Brown
e Lead Software Engineer at Yellowpages.com

YELLOWPAGES.COM®

e Creator of Gallio Open Source Project
e Lead of MbUnit Open Source Project
e Coding is fun!



Outline

«
e Gallio and MbUnit

Demo

What is a Toolchain?
Implementation Challenges
Under the Hood

Roadmap

Questions



Gallio >
O

e Gallio Is a neutral test automation platform.
- Open Source. (Apache License)
— Microsoft .Net platform.

- Aims to provide great tools integration for many
different test frameworks.

— Started in October 2007 as a spinoff from MbUnit.
e Current release: v3.0.5.
e \Website: www.gallio.org




Gallio >
O

e Vision: Gallio will be the foundation for a rich

suite of interoperable tools.

e Test frameworks.

e Test runners.

e Test case managers.

e Test generators.

e Test reports and analytics.

e Test editors and IDE integration.
e Continuous integration facilities.



| 2
Gallio o>

o]
e Lingua franca for test tools.
-~ Common object model.
- Support for many different workflows.
- Extensible.
- Evolving.
- Owned by the community.

e Objective: To unite, not to control.



| R
Gallio o>

e Tools support

— Frameworks: CSUnit, MbUnit v2, MbUnit v3, MSTest,
NBehave, NUnit, xUnit.net

- Runners: GUI (Icarus), Command-line (Echo),
TestDriven.Net, ReSharper, Visual Studio Test Tools,
MSBuild, NAnt, PowerShell.

— Other: CruiseControl.Net, TeamCity, TypeMock, NCover,
Pex, AutoCAD

e 3" party Contributions: DXCore runner (RedGreen),
MSpec, and more...



g,

Gallio &
. ]
e Trivia

— Original code name provided by Andrew Stopford
was to be “Galileo” but it was corrupted to “Gallio”
due to a misspelling in an early email thread.



MbUnit

e MbUnit Is a test automation framework.
- Open Source. (Apache License)

- Aims to provide a powerful framework for unit
testing and integration testing for .Net.

- Started by Jonathan “Peli” de Halleux in 2004.
- Complete rewrite for MbUnit v3 in 2007/2008.

e Current release: MbUnit v3.0.5.
e \Website: www.mbunit.com



MbUnit

e MbUnit is mostly NUnit compatible but
Improves on it in many ways:
—- Focus on usability and clear reporting.

- Data-driven testing. (eg. [Row]-test, pairwise and
combinatorial testing)

— Supports unit testing and integration testing.
- Easily extensible by creating new attributes.
- Dynamic test structure.



MbUnit

e Trivia:
— Original name was GUnit but that name turned
out to already be taken.

- Model based Unit Testing Framework.

— Or if you prefer...

e Much better Unit Testing Framework. ;-)



Gallio and MbUnit Demo
« /]



What is a Toolchain?
« "/ /7

e A collection of tools that work together.

e Did you notice how many different
Interactions there were between tools in the
demo?

- Alot.



Implementation Challenges
S

e Test code iIs hostile!

- By definition, subject under test may contain
bugs.

— Could kill the test process due to stack overflows,
out of memory, and other side-effects.

e Test code must be isolated.
- Run In separate process, ideally.
- Run In separate AppDomain, at a minimum.
- Be prepared to abort the test run.



Implementation Challenges
S

e Test frameworks define tests differently.

- XUnit.Net: A fixture is just a .Net class, a test is
just a .Net method.

- NUNnit: Tests are declared statically using
metadata in a .Net assembly.

- MbUnit: Tests are declared statically but data-
driven test instances are generated dynamically.

- RSpec: Tests are generated dynamically when a
test script is evaluated.



Implementation Challenges
S

e Test frameworks define tests differently...
- Some use XML.
- Some use databases.
- Some use collections of standalone programs.
- Some generate tests on-the-fly from a model.
- etc...

e Test representation must be flexible.

e Test platform must not be “opinionated” though it
must support frameworks that are.



Implementation Challenges
S

e Test frameworks make assumptions

Working directory contains test assembly.
Application base directory is same as working directory.
Can resolve references to test assembly dependencies.

If a test assembly has an associated configuration file, it is
loaded.

Xx86-only tests run in x86 mode on x64.
Full trust security model.



Implementation Challenges
S

e Extensibility model mismatches.

- ReSharper wants plugins to be installed in
C:\Program Files\JetBrains\ReSharper\...

— Visual Studio Test Tools must be able to load
custom test types from GAC or from Visual Studio
Private Assemblies.

- TestDriven.Net can load a test framework
assembly from anywhere but it might not be able
to resolve the references of that assembly.



Implementation Challenges
S

e Test platform must be prepared to establish
Its own private hosting environment
regardless of how it is loaded by 3" party
tools.



Implementation Challenges

e Test hosts make assumptions
— Everything is running in a single process (for
debuggers and code profilers).
- Test code does not have lasting side effects upon
the host.

— Test structure:
e Dynamic metadata rich hierarchy (Gallio)
e Static hierarchy rooted at project (ReSharper)
e Static flat list (Visual Studio)
e Ignored and not reported in results (TestDriven.net)



Under the Hood
« /]



Under the Hood: Test Model

.|
e At test exploration time...
- All we have Is static metadata.
- Some data may not be available.
- Might not be able to execute code.
— Create a ITest Tree to describe exploration.

e At test execution time...
- We have all the information.
- Create a ITestStep Tree to describe execution.



Under the Hood: Test Model
« /]

e Tests have:
- Uniqgue stable identifier.
- Name.

- Metadata.
e Kind: Namespace, Fixture, Suite, Test, etc...
e Description.
e Documentation.
e Arbitrary key/value pairs.

— Children.

- Dependencies.
— Ordering.

- Parameters.



Under the Hood: Test Model
« /]

e Caveats:

- We might define new tests at runtime.

—- Tests might have dynamic substructure
e eg. Instances of parameterized tests.

- Test runners cannot assume static and dynamic
test structure are the same (but many do..)



Under the Hood: Test Log
-

e \Want to report test results uniformly.
e Simple document format.

e Primitives:
- Streams (Containers)
e Failures, Warnings, Console Output, etc...
— Sections (Delimiters)

- Markers (Embedded Metadata)
e Diffs, Links, Highlights, Stack Traces

— Text
- Attachments



Under the Hood: Reflection
« /]

e Tests can be explored before compilation!
- JetBrains ReSharper™ unit test runner

e Abstract reflection layer
— Native .Net reflection wrappers.
- ReSharper Code Model wrappers. (x2)
- Visual Studio Code Model wrappers.
— Cecll wrappers.

e Enables test explorer to be polymorphic.



Under the Hood: Reflection
« /]

e Abstract Reflection API

- IReflectionPolicy

— ICodeElementinfo

e |IAssemblyinfo, IAttributelnfo, IConstructorinfo, IEventinfo,
IFieldInfo, IGenericParameterinfo, IMemberinfo,
IMethodInfo, INamespacelnfo, IParameterinfo, ITypelnfo

— CodelLocation, CodeReference
-~ Access to Xml documentation comments.

e Unexpected bonus: Uniformity
— IFunctioninfo: constructor or method.
- ISlotInfo: field, property, parameter, or generic parameter.



Under the Hood:
Pattern Test Framework

e Reflection-based frameworks are common.
e Demand for different syntaxes: BDD, etc...
e Typical solution:

- Syntax adapters: wrap another test framework.

e Better solution:
- Reuse code test exploration strategy.
- Define completely custom syntax.
— Better user experience and branding potential.



Under the Hood:
Pattern Test Framework

e |Pattern

— Basic compositional unit of structure in a test.
e “Abstract syntax”

— Three basic methods:
e IsPrimary: Does this pattern declare something new?

e Consume: If this pattern is primary, produce something
new from a given code element.

e Process: Enrich something else created by another
pattern using a given code element.



Under the Hood:
Pattern Test Framework

S
e [PatternAttribute]

- Associates a pattern with a code element.

- Most MbUnit v3 attributes are Pattern Attributes.
e You can make a custom framework the same way.



Under the Hood:
Pattern Test Framework

.|
e MbUnit v3 Examples:

- [Test]: Primary pattern that creates a new tests.

- [SetUp]: Primary pattern that registers the
associated method in the “setup chain” of the
containing fixture.

- [Description]: Secondary pattern that adds
descriptive metadata to a test or fixture.

- [Row]: Secondary pattern that adds a new data
source to a test or fixture.



Under the Hood:
Pattern Test Framework

e Might help you write a new test framework...
- Reflection-based test exploration.
- General-purpose test execution engine.
— Data binding.
- etc...

e Or forget all of this and build it from scratch...

- Just implement ITestFramework, ITestExplorer,
and ITestController to explore and execute tests.



| essons Learned
€« 07

e Beware of hidden assumptions.
— All test hosts are a little different.

— Protect the test frameworks and tools from
unanticipated variations in hosting.

e Version independence Is mandatory.



| essons Learned
€« 07

e Consolidation of the tool chain is very useful.

e This is a lot harder than it looks!

— If you plan to write your own test framework,
consider using Gallio as the underlying platform.



Roadmap

e v3.0: First spike.
— Self-host.
- Integrate with many different environments.
- Challenge assumptions. Gain experience.

e v3.1: Generalize and consolidate.
- Support non-.Net languages and workflows.

- Simplify extensibility contracts.
- Performance.



Gallio Futures
«_ /////]

e Gallio is the nucleus of a growing suite of
Interoperable test tools.
- Ambience: A database for persistent test data.

- Archimedes: An automation test case manager
Including distributed test agent and test data
warehouse.

e Dynamic languages, scripting languages,
test DSLs and non .Net frameworks in v3.1.



MbUnit Futures
« /]

e More built-in assertions.

e Provide “mixins” to assist with integration of
3'd party libraries such as Rhino.Mocks,
Selenium and WatiN.

e ASP.Net hosting.
e .Net Framework 4.0 extensions.



Ongoing and Upcoming Projects
S

e Gallio Book

e Mono Support

e Test Case Manager (Archimedes)

e Test Data Warehouse

e Distributed Test Runner

e Modeling Language for Integration Tests



Volunteers Wanted!
«__ 7

e \What do you want to do?
— Build your own stuff using Gallio.
— Add new stuff to Gallio itself.
- Promote Gallio.
— Offer feedback and suggestions.
- Help us write the Gallio Book.



Questions?
- ]



