
The Joys and Pains of a Long Lived
Codebase

Jeremy D. Miller
November 20th, 2008

About Me

• Chief Software Architect at Dovetail Software in Austin,
TX

• Author of StructureMap
♦ http://structuremap.sourceforge.net

• “The Shade Tree Developer”• “The Shade Tree Developer”
♦ http://codebetter.com/blogs/jeremy.miller

• jeremydmiller@yahoo.com

What is StructureMap?

• Inversion of Control / Dependency Injection tool for .Net
• Open Source under the Apache 2.0 license
• I’m the primary author

…this isn’t really about StructureMap itself

The Journey So Far

• Recovering data centric VB6 developer to…
• StructureMap was originally released in 2004
• TDD was new in .Net circles
• .Net 1.1 to .Net 2.0 to .Net 3.5
• The “Python 3000” Release in 2008• The “Python 3000” Release in 2008

What has Changed?

• Lower tolerance for ceremony
• Programmatic configuration is now favored over Xml

configuration
• More complicated usage

♦ Composite configuration ♦ Composite configuration
♦ Interception

• Convention over Configuration
• Explicit Configuration vs. Just Let it Work
• Language innovation

What Have I Learned?

• Solid design in the small is crucial
• To organize and structure by behavior
• Automated test coverage isn’t automatically effective
• Some nasty lessons about creating API’s for other

developersdevelopers

Don’t Repeat Yourself

• It’s 2005, and Generics are all the rage in .Net
• Wouldn’t it be nice if StructureMap could support open

generic types…

• Lesson Learned: Even innocuous looking duplication can
be harmful

Encapsulation is Key

Vile, Evil Code

public class ClassWithFoos
{

private readonly IDictionary<string, Foo> _foos
= new Dictionary<string, Foo>();

public IDictionary<string, Foo> Foos
{

get { return _foos; }
}

}

Keep the Code Limber

• Watch for similar code
• Use static code analysis as another pair of eyes
• Reduce the size of the codebase

Better Abstractions

• “Noun” based design is naïve
• Design abstractions by responsibilities and roles
• Use object role stereotypes

“The Great Refactoring of Aught Eight”

Before

• InstanceManager
• InstanceFactory
• InstanceMemento

After

• Container
• InstanceFactory (simpler)
• Instance• InstanceMemento • Instance
• BuildSession
• PipelineGraph
• BuildPolicy

Test Driven Development allows for
modifiability…

…if done well

Organizing Tests

• 1 Concrete Class == 1 TestFixture (Not!)
• TestFixture per Feature
• Arriving at Behavior Driven Development

♦ Number of Assertions per Test
Pay attention to the “language” of tests♦ Pay attention to the “language” of tests

♦ Emphasize scenarios over units of code
♦ Test what you’re testing

Test Input

• Ideally, tests should be self-contained
• Use meaningful test data
• Watch the Expensive Test Setup Smell
• Invest in ObjectMothers or Test Data Builders
• Be extremely cautious in reusing test data across multiple • Be extremely cautious in reusing test data across multiple

tests

Building Configuration Intensive Frameworks

• Isolate functionality from configuration
• Isolate the user from framework internals
• Fail Fast
• Diagnostics are Important

Crafting Good API’s

• Essence vs. Ceremony
• The Pit of Success
• Consistency
• Predictability
• Discoverability• Discoverability
• Readability / Understandability

Takeaways

• Keep your code clean
• Make sure your abstractions match reality, and reality

changes over time
• Minimize ceremony
• Test behaviors, not implementation details• Test behaviors, not implementation details
• Good tests are readable tests

