
YELLOWPAGES.COM: Behind the Curtain

John Straw
AT&T Interactive

mailto:jstraw@yellowpages.com

What is YELLOWPAGES.COM?

■ Part of AT&T

■ A local search website, serving
● 23 million unique visitors / month
● 2 million searches / day
● More than 48 million requests / day
● More than 1500 requests / sec
● 30 Mbit/sec (200 Mbit/sec from Akamai)

■ Entirely Ruby on Rails since June 2007

How we were

■ Website and API applications
written in Java
● Website in application server
● API in Tomcat

■ Search code split between
application and search layer

What was bad

■ Problems with architecture
● Separate search implementations in each application
● Session-heavy website application design hard to scale horizontally
● Pointless web accelerator layer

■ Problems with application server platform
● Technologically stagnant
● No usable session migration features
● Hard to do SEO

And also ...

■ Lots of code written by consultants 2004-2005

■ Fundamental design problems

■ Code extended largely by copy-and-modify since 11/2005 (to
around 125K lines)

■ No test code

■ New features hard to implement

The Big Rewrite

■ Several projects combined to become the big rewrite
● Replacement of Java application server
● Redesign of site look-and-feel
● Many other wish-list projects, some of which were difficult to

accomplish with existing application
■ Project conception to completion: one year

■ Development took about four months

■ Project phases
● 7/2006 - 12/2006: Thinking, early preparation
● 12/2006: Rough architecture determination, kick-off
● 1/2007 - 3/1/2007: Technology research and prototypes, business

rules exploration, UI design concepts
● 3/1/2007 - 6/28/2007: Site development and launch

Requirements for a new site architecture

1. Absolute control of urls
● Maximize SEO crawl-ability

2. No sessions: HTTP is stateless
● Anything other than cookies is just self-delusion
● Staying stateless makes scaling easier

3. Be agile: write less code
● Development must be faster

4. Develop easy-to-leverage core business services
● Eliminate current duplicated code
● Must be able to build other sites or applications with common

search, personalization and business review logic
● Service-oriented architecture, with web tier utilizing common

service tier

Rewrite team

■ Cross-functional team of about 20 people
● Assemble stakeholders, not requirements

■ Working closely together
● Whole team sat together for entire project
● Lunch provided several days per week
● Team celebrations held for milestones

■ Core development team deliberately small
● Four skilled developers can accomplish a lot
● Cost of communication low
● Low management overhead

Picking the platform

■ Web tier:
● Rails or Django
● Utilizing common services for

search, personalization, and
ratings

■ Service tier:
● Java application
● Probably EJB3 in JBoss
● Exposing a REST API and

returning JSON-serialized data
■ Started writing prototypes ...

One

Two

Three

And finally ...

Why Rails?

■ Considered Java frameworks didn't provide enough control of
url structure

■ Web tier choice became Rails vs. Django

■ Rails best web tier choice due to
● Better automated testing integration
● More platform maturity
● Clearer path (for us!) to C if necessary for performance
● Developer comfort and experience

■ Team decided to go with Rails top-to-bottom
● Evaluation of EJB3 didn't show real advantages over Ruby or

Python for our application
● Reasons for choosing Rails for web tier applied equally to service

tier
● Advantage of having uniform implementation environment

Separate or combined?

Other considerations

■ How many servers?

■ How many mongrels per server?

■ How much memory for memcached?

Production configuration

■ Acquired 25 machines of identical configuration for each data
center

■ Performance testing to size out each tier, and determine how
many mongrels

■ 4 GB of memory on each service-tier machine set aside for
memcached

■ Used 2 machines in each data center for database servers

Performance goals

■ Sub-second average home page load time

■ Sub 4-second average search results page load time

■ Handle traffic without dying

Performance optimizations

■ mongrel_handlers in service tier application

■ C library for parsing search cluster responses

■ Erubis rather than erb in web tier

Site at launch

Database performance issues

■ Machines inadequate to handle search load for ratings look-up
● Additional caching added

■ Oracle doesn't like lots of connections

■ Use of named connections made this problem even worse
● Additional memory required for database servers
● All database look-up code moved to service tier
● Changed to a single database connection

Page performance issues

■ Slow page performance caused more by asset download times
than speed of web framework

■ Worked through the Yahoo! performance guidelines

■ Minified and combined CSS and Javascript with
asset_packager

■ Moved image serving to Akamai edge cache

■ Apache slow serving analytics tags -- moved to nginx for web
tier

■ Started using some fragment caching

Slow requests, etc.

■ Slow requests in the web tier caused mongrel queueing
● Developed qrp (http://qrp.rubyforge.org/)
● Allows you to establish a backup pool where requests get parked

until a mongrel is available
■ Experimented with different malloc implementations

■ Started using a custom MRI build -- ypc_ruby

■ Started using a slightly-customized Mongrel

Overall performance

■ Performance at launch was generally acceptable

■ After web server & hosting changes performance better than
previous site

■ Extensive use of caching and elimination of obsolete queries
lowered load on search cluster compared to previous site

■ Over a year later, we need to do more profiling
● Traffic has more than doubled since launch
● Hardware evolution has invalidated original profiling
● We now want sub 2-second search result pages

What else?

■ New applications on Rails
● Server-side component of native iPhone application
● Working on moving current Java API application
● Other internal applications

■ Ruby but not Rails
● Exploratory port of service tier to merb
● Supporting development of Waves
● Data-source ETL
● Listing match-and-merge

	Title
	What is YELLOWPAGES.COM?
	How we were
	What was bad
	And also ...
	The Big Rewrite
	Requirements for a new site architecture

	Rewrite team
	Picking the platform
	One
	Two
	Three
	And finally ...
	Why Rails?
	Separate or combined?
	Other considerations
	Production configuration
	Performance goals
	Performance optimizations
	Site at launch
	Database performance issues
	Page performance issues
	Slow requests, etc.
	Overall performance
	What else?

