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What is YELLOWPAGES.COM?

■     Part of AT&T

■     A local search website, serving
●     23 million unique visitors / month
●     2 million searches / day
●     More than 48 million requests / day
●     More than 1500 requests / sec
●     30 Mbit/sec (200 Mbit/sec from Akamai)

■     Entirely Ruby on Rails since June 2007



How we were

■     Website and API applications 
written in Java
●     Website in application server
●     API in Tomcat

■     Search code split between 
application and search layer



What was bad

■     Problems with architecture
●     Separate search implementations in each application
●     Session-heavy website application design hard to scale horizontally
●     Pointless web accelerator layer

■     Problems with application server platform
●     Technologically stagnant
●     No usable session migration features
●     Hard to do SEO



And also ...

■     Lots of code written by consultants 2004-2005

■     Fundamental design problems

■     Code extended largely by copy-and-modify since 11/2005 (to 
around 125K lines)

■     No test code

■     New features hard to implement



The Big Rewrite

■     Several projects combined to become the big rewrite
●     Replacement of Java application server
●     Redesign of site look-and-feel
●     Many other wish-list projects, some of which were difficult to 

accomplish with existing application
■     Project conception to completion: one year

■     Development took about four months

■     Project phases
●     7/2006 - 12/2006: Thinking, early preparation
●     12/2006: Rough architecture determination, kick-off
●     1/2007 - 3/1/2007: Technology research and prototypes, business 

rules exploration, UI design concepts
●     3/1/2007 - 6/28/2007: Site development and launch



Requirements for a new site architecture

1.     Absolute control of urls
●     Maximize SEO crawl-ability

2.     No sessions: HTTP is stateless
●     Anything other than cookies is just self-delusion
●     Staying stateless makes scaling easier

3.     Be agile: write less code
●     Development must be faster

4.     Develop easy-to-leverage core business services
●     Eliminate current duplicated code
●     Must be able to build other sites or applications with common 

search, personalization and business review logic
●     Service-oriented architecture, with web tier utilizing common 

service tier





Rewrite team

■     Cross-functional team of about 20 people
●     Assemble stakeholders, not requirements

■     Working closely together
●     Whole team sat together for entire project
●     Lunch provided several days per week
●     Team celebrations held for milestones

■     Core development team deliberately small
●     Four skilled developers can accomplish a lot
●     Cost of communication low
●     Low management overhead



Picking the platform

■     Web tier:
●     Rails or Django
●     Utilizing common services for 

search, personalization, and 
ratings

■     Service tier:
●     Java application
●     Probably EJB3 in JBoss
●     Exposing a REST API and 

returning JSON-serialized data
■     Started writing prototypes ...



One



Two



Three



And finally ...



Why Rails?

■     Considered Java frameworks didn't provide enough control of 
url structure

■     Web tier choice became Rails vs. Django

■     Rails best web tier choice due to
●     Better automated testing integration
●     More platform maturity
●     Clearer path (for us!) to C if necessary for performance
●     Developer comfort and experience

■     Team decided to go with Rails top-to-bottom
●     Evaluation of EJB3 didn't show real advantages over Ruby or 

Python for our application
●     Reasons for choosing Rails for web tier applied equally to service 

tier
●     Advantage of having uniform implementation environment



Separate or combined?



Other considerations

■     How many servers?

■     How many mongrels per server?

■     How much memory for memcached?



Production configuration

■     Acquired 25 machines of identical configuration for each data 
center

■     Performance testing to size out each tier, and determine how 
many mongrels

■     4 GB of memory on each service-tier machine set aside for 
memcached

■     Used 2 machines in each data center for database servers



Performance goals

■     Sub-second average home page load time

■     Sub 4-second average search results page load time

■     Handle traffic without dying



Performance optimizations

■     mongrel_handlers in service tier application

■     C library for parsing search cluster responses

■     Erubis rather than erb in web tier



Site at launch



Database performance issues

■     Machines inadequate to handle search load for ratings look-up
●     Additional caching added

■     Oracle doesn't like lots of connections

■     Use of named connections made this problem even worse
●     Additional memory required for database servers
●     All database look-up code moved to service tier
●     Changed to a single database connection



Page performance issues

■     Slow page performance caused more by asset download times 
than speed of web framework

■     Worked through the Yahoo! performance guidelines

■     Minified and combined CSS and Javascript with 
asset_packager

■     Moved image serving to Akamai edge cache

■     Apache slow serving analytics tags -- moved to nginx for web 
tier

■     Started using some fragment caching



Slow requests, etc.

■     Slow requests in the web tier caused mongrel queueing
●     Developed qrp (http://qrp.rubyforge.org/)
●     Allows you to establish a backup pool where requests get parked 

until a mongrel is available
■     Experimented with different malloc implementations

■     Started using a custom MRI build -- ypc_ruby

■     Started using a slightly-customized Mongrel



Overall performance

■     Performance at launch was generally acceptable

■     After web server & hosting changes performance better than 
previous site

■     Extensive use of caching and elimination of obsolete queries 
lowered load on search cluster compared to previous site

■     Over a year later, we need to do more profiling
●     Traffic has more than doubled since launch
●     Hardware evolution has invalidated original profiling
●     We now want sub 2-second search result pages



What else?

■     New applications on Rails
●     Server-side component of native iPhone application
●     Working on moving current Java API application
●     Other internal applications

■     Ruby but not Rails
●     Exploratory port of service tier to merb
●     Supporting development of Waves
●     Data-source ETL
●     Listing match-and-merge
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