
Jonathan Trevor
(jtrevor@yahoo-inc.com)

Pipes and Y! Query Language (YQL)

mailto:jtrevor@yahoo-inc.com
mailto:jtrevor@yahoo-inc.com

- -

- -

Apt near Park

How do you find an apartment near a park?

- -

• Apartment listings
– For each apartment:

• Click on map link or enter an address into a browser
• Check distance to a park on the map

• Tedious

Apt near Park

- -

Apt near Park

• Data is available
– Apartment RSS feeds, craigslist, backpage.com
– Yahoo! Local API to find “things” like parks

• Can do it in about 50 lines of Perl code
#!/usr/bin/perl -w
use strict;
use LWP::Simple;
use XML::Simple;
...

http://sfbay.craigslist.org/search/apa/pen?query=&minAsk=min&maxAsk=max&bedrooms=&neighborhood=83
http://sfbay.craigslist.org/search/apa/pen?query=&minAsk=min&maxAsk=max&bedrooms=&neighborhood=83

- -

Apt near Park

• Basically combine feeds + web services
• Yet another custom mashup

– HousingMaps, ChicagoCrime, ...

• Would be nice if there was an easier way...

- -

Pipes

grep -iv yahoo.com squid.log | sort |
uniq -c | sort -n > top_sources.txt

• Unix Pipes for the Web
• Build useful applications from simple primitives

- -

Pipes

• A free service that lets you remix and create data mashups
using a visual editor

• No need to host, we do it for you

Yahoo!

Craigslist

- -

Pipes

• A free service that lets you remix and create data mashups
using a visual editor

• No need to host, we do it for you

Yahoo!

Craigslist

- -

Demo

- -

Piecing things together in the cloud

- -

Any Input

Craigslist

Your data
here!

Yahoo!

Google

Ebay

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

- -

Any Output

RSS

Badges

Your app
here!

HTML

- -

Any Process

Fetch
Yahoo! Local

Your Web Service
Here!

Sort

- -

Openness

Fetch
Yahoo!
Local

Your Web
Service Here!

Sort

RSS

Badges

Your app
here!

HTML

Craigslist

Your data
here!

Yahoo!

Google

Ebay

- -

• Searches across many different deal hunting sites on the
internet looking for the best prices. You can search for
particular items or just let the pipe find the best of what's
available

Hot Deals Search

- -

Geoannotated Reuters News

• Takes an RSS feed from the Reuters news service, and
"geocodes" each item - making it possible to show where that
news item is happening on a map of the world.

- -

Who’s Viewed My LinkedIn Profile

- -

Kiva Loans by Location

• Gets a list of the micro-loans people have been making
through the Kiva site, and shows the amazing variety of
people and places that these loan are helping out.

- -

Yahoo! Buzz Image Search

- -

Yahoo Finance Stock Quote Watch List Feed w/
Chart

- -

Contact's Favorite's

- -

Yahoo Unanswered Questions

• Finds those questions in the Y! answers site that don't
currently have an answer - so you can show how smart you
are and answer those tricky questions.

- -

Babbler by Max Case

• Translates IM messages in Second Life

- -

Advantages to developers

• Why use an online service to do this?
– Leveraging large infrastructure

• Faster access to network resources
• Faster access to network services

– System-wide knowledge
– Leverage inter-organizational agreements
– Easy to “string” together with other services
– Easy to use (REST-style URLs)

- -

Run / Get the data

• Each Pipe gets its own “hosted” page

• Use the REST-style URLs to get the data

- -

Run / Get the data

• Each Pipe gets its own “hosted” page

• Use the REST-style URLs to get the data

- -

 Edit REST-style queries

http://pipes.yahoo.com/pipes/pipe.run?
_id=1mrlkB232xGjJDdwXqIxGw
&_render=json
&location=palo+alto%2C+ca
&mindist=2
&what=parks
&_callback=foofunction

The ID of the Pipe

http://pipes.yahoo.com/pipes/pipe.run?
http://pipes.yahoo.com/pipes/pipe.run?

- -

http://pipes.yahoo.com/pipes/pipe.run?
_id=1mrlkB232xGjJDdwXqIxGw
&_render=json
&location=palo+alto%2C+ca
&mindist=2
&what=parks
&_callback=foofunction

 Edit REST-style queries

The format of the output (rss, json, kml,
ical, csv)

http://pipes.yahoo.com/pipes/pipe.run?
http://pipes.yahoo.com/pipes/pipe.run?

- -

http://pipes.yahoo.com/pipes/pipe.run?
_id=1mrlkB232xGjJDdwXqIxGw
&_render=json
&location=palo+alto%2C+ca
&mindist=2
&what=parks
&_callback=foofunction

 Edit REST-style queries

The per Pipe user customizable parameters

http://pipes.yahoo.com/pipes/pipe.run?
http://pipes.yahoo.com/pipes/pipe.run?

- -

http://pipes.yahoo.com/pipes/pipe.run?
_id=1mrlkB232xGjJDdwXqIxGw
&_render=json
&location=palo+alto%2C+ca
&mindist=2
&what=parks
&_callback=foofunction

 Edit REST-style queries

Optional JSONP callback function

http://pipes.yahoo.com/pipes/pipe.run?
http://pipes.yahoo.com/pipes/pipe.run?

- -

A year and a half in the wild:
a few observations and lessons

• 20+ releases, 600k+ Pipes later
• Unexpected breadth

– Experts who want to exploit the service
– Non-programers with much simpler needs

- -

Web addressable data...

• is very malformed
• can be slow
• needs considerate access
• can be untrustworthy
• can be inaccessible from “here” (behind firewall etc)

- -

Data in the Engine...

• is “cleaned” (and repaired) into UTF-8
• is cached for

– performance
– playing well with others
– several HTTP proxy layers

• serve stale and force caching

• is “sanitized”

- -

Making it easy to consume

• Its easy to make useful data in the cloud
– Its not easy enough (for many) to use it after
– Visualization beyond lists in RSS readers

• Badges are frequently requested
• Three variants for common types of data in Pipes

- -

Typical Pipes/mashups

• Four types of mashup
– Feed aggregation with filtering
– Two-source mashups
– Data transformation and geocoding
– Complex mashups using REST APIs

• Geocoding remains a “mashup” favorite

- -

Reasons for adoption

• Lower barrier to use
– Graphical editor made it quick to write Pipes, attracted non-

developers
– “View Source” and “Clone” for learning/tweaking

• Wide array of data input formats and data output formats
enabled Pipes to become a useful “component” in a larger
ecology

• Web 2.0 responsiveness to community

- -

Inaccessible data

• Lots of requests for more rich and personal data
– Text documents, word documents, mail, Excel spreadsheets
– Also organizational data

• Workarounds (to some) emerged
– Online spreadsheets, calendars (gcal) with private RSS feeds

and so on

- -

Power...

• We started by focusing on RSS
– high-level building blocks and operations
– good for common tasks and novice users

• We listened to our user’s desires

- -

...vs Complexity

• Added sources for parsing JSON, XML, CSV, ICAL ...
• Added modules that could do more and be combined in many

ways
• At the cost of simplicity

– Harder to explain, use, compose
– Stretching the capabilities of many users and a visual

development environment

- -

Yahoo! Query Language
(YQL)

- -

YQL

• Part of the recent Y!OS release
– Social APIs, Universal profile, Application platform...

• Mediator service that enables developers to query, filter and
combine Y! data and beyond
– Yahoo! web services and any URL-addressable structured data

sources

• Exposes a SQL-like SELECT syntax that is both familiar to
developers and expressive enough for getting the right data
– YQL operates on hierarchical documents, not relational tuples

• Like Pipes but with a simple textual language

- -

The language and service

• Provides three SQL-like statements:
SELECT, SHOW, DESC

• Single URL endpoint for executing everything
– Mix and match external data and Yahoo! APIs

• Uses Oauth for authentication
– Open standard that enables users to grant applications access

to (selected) private data

http://query.yahooapis.com/v1/yql?q=show%20tables

http://query.yahooapis.com/v1/yql?q=show%20tables&format=xml
http://query.yahooapis.com/v1/yql?q=show%20tables&format=xml

- -

Testing your queries: interactive console

- -
44

- -
45

- -
46

- -
47

- -
48

- -
49

- -
50

- -
51

- -
52

- -
53

- -
54

- -
55

- -
56

- -

(Very) High Level Architecture

Query Web Service

Execution
engine

Source

Project

Filter

Sort

Union

Source

Filter

Factory

Parser

Optimizer
and

builder

YQL
statement

Existing Web
Service

XML

3rd party Web
Service / data

JSON
CSV

XML
ATOM

XML

Partially/not optimized

Un-optimized/whole doc
C

ac
he

Ta
bl

e
m

ap
pi

ng

- -

Mapping tables to data sources

• YQL wants to push as much of the query as possible to the
remote data provider/service

• Typically REST query/path parameters do not map closely to
result structure
– We call these “keys” and are named differently than dot-path
– Simple REST definition language describes how YQL executes

queries on “table” providers

- -

Remote and Local filtering, paging

• Table data can be filtered in the WHERE clause either:
– Remotely by the table data source provider or
– Locally by the YQL engine

• YQL tries to present “rows” of data
– Abstracts away “paging” views of data sources
– Presents a “subset” of paging tables by default

select * from local.search(500,1000) where
zip='94085' and query='pizza’

- -

IN (SELECT…): Joining across data sources

• No left joins, sub-select only
• Get an international weather forecast? Join two services in

different companies:

• Sub-select works the same as normal select except it can
only return a “leaf” element value or attribute

• Parallelizes execution

select * from weather.forecast where location in
 (select id from xml where
 url="http://xoap.weather.com/search/search?where=prague"
 and itemPath="search.loc")

- -

Post-query manipulation

• Simple post-SELECT processing can be performed by appending
the “pipe” symbol to the end of the statement:

SELECT … |sort(field=item.date)
SELECT … |unique(field=item.title)| …

• Functions only operate on the data being returned by the query,
nothing to do with the tables or data sources themselves

- -

Use it!

• Public+private YQL tables can be accessed at:
http://query.yahooapis.com/v1/yql?q=…

• Oauth protected, URLs must be signed
– 2-legged for public tables
– 3-legged for social tables

• Public YQL tables (soon)
– No signing required

- -

Next steps, challenges

• “Open” tables
• Multiple authentication authority support
• Better YQL query optimization for endpoints
• Foreign key consistency
• Scripting/language bindings

- -

Finally: Pipes without the GUI editor

• Very popular Pipe pattern is easy to represent in YQL:

SELECT * FROM rss WHERE url in

(SELECT title FROM atom WHERE url="http://
spreadsheets.google.com/feeds/list/pg_T0M/
od6/public/basic")
AND description LIKE "%wall street%" LIMIT 10
| unique (field=title)

- -

Conclusion: Pipes and YQL

• Provides powerful data functions to any client
• Consumes data from many services
• Common data formats means any part of the cloud can

become the input
– Dapper, AWS, Google spreadsheets

• ...or take the output
– 1/3 Google mashups are powered by Pipes

- -

Conclusion: Pipes and YQL

• Enable developers to easily access, combine, and filter data
to fit their application requirements
– Self-documenting model

• YQL provides developers with consistent and unified
semantics for accessing data, not just Yahoo! services

• Low overhead
• Reduce roundtrip traffic by reducing the number of requests

- -

Thank you

• Pipes
– http://pipes.yahoo.com

• YQL
– http://query.yahooapis.com/v1/yql
– http://developer.yahoo.com/yql
– http://developer.yahoo.com/yql/console

• Get in touch
– jtrevor@yahoo-inc.com
– yql-questions@yahoo-inc.com

http://pipes.yahoo.com
http://pipes.yahoo.com
http://query.yahooapis.com/v1/yql
http://query.yahooapis.com/v1/yql
http://developer.yahoo.com/yql
http://developer.yahoo.com/yql
http://developer.yahoo.com/yql/console
http://developer.yahoo.com/yql/console

- -

REST def
<?xml version="1.0" encoding="UTF-8"?>
<table xmlns="http://query.yahooapis.com/v1/schema/table.xsd">
 <sampleQuery>select * from geo.places where text="sfo"</sampleQuery>
 <endpoints>
 <endpoint itemPath="places.place" format="XML">
 <urls>
 <url env="all">http://where.yahooapis.com/v1/
places=dol=and(.q($text$,$focus$),.type($placetype$))?appid=xxx</url>
 </urls>
 <paging model="offset">
 <start id="start" default="0" matrix="true" />
 <pagesize id="count" max="10" matrix="true" />
 <total default="10" />
 </paging>
 <keys>
 <key id="text" type="xs:string" />
 <key id="focus" type="xs:string" />
 <key id="placetype" type="xs:string" />
 </keys>
 </endpoint>

- -

Doing the mobile mash

- -

Fantasy Sports search

• Get the edge on your friends with a single RSS feed based
on searching 70 sites for fantasy sports blog articles

- -

Craigslist house lookup with static Yahoo map

- -

LastTube

• Uses content from Last.fm and YouTube. You can watch
Youtube’s content based on your Recently Listened Tracks
scrobbled to Last.fm.

