
HTTP Status Report
Mark Nottingham

IETF HTTPbis WG Chair <mnot@mnot.net>
Principal Technical Yahoo! <mnot@yahoo-inc.com>

Hidden Agenda
• Inform what HTTP (the protocol) can do

• Inform what implementations can't (yet) do

• Encourage implementers to close the gap

Status of the Standards

HTTP circa 1996
• HTTP/0.9 fading quickly

• HTTP/1.0 taking off

• HTTP/1.1 to contain the damage

• virtual hosting

• persistent connections

• caching

• HTTP-NG discussions already underway

HTTP circa 1996
• Typical use

• Browser client, static or CGI content

• GET, POST

• WebDAV: Glimmer in Whitehead’s eye

• Services: huh?

2002: BCP56
• “On the use of HTTP as a Substrate”

• Reasonable advice for the IETF community,
but failed to foresee “services” and “Web 2.0”

• Codified distaste with non-browser uses

• A new port for every app

• Probably a new URI scheme too

• Currently being considered for deprecation

HTTP in 2008
• HTTP/2.0 didn’t happen

• WS-* debacle unfortunately did

• PEP turned into SOAP

• “RESTful” APIs

• HTTP as Protocol Construction Toolkit

• Big surprise: Atompub

• Pressure to extend

• Explosion of implementations

• new servers, clients

• new frameworks, APIs

HTTPbis
• IETF Working Group to

• incorporate errata

• clarify ambiguities

• document extensibility

• improve interoperability

• I.e., writing the recipe down more clearly

• Specifications need to outlive their creators

• NOT to extend HTTP (but wait...)

HTTPbis: specs
• Problem: RFC2616 is 176 pages of text/plain

• Solution: split it up

• p1: messaging

• p2: semantics

• p3: payload

• p4: conditional requests

• p5: ranges

• p6: caching

• p7: authentication

HTTPbis: fixing...
• Currently 139 issues, like

• ABNF conversion

• Whitespace between header name and colon

• Registries for status codes, methods...

• Vary corner cases

• Clarify handling of bodies on GET requests

• Header i18n and folding

• ETags on PUT responses

• Get rid of 305 Use Proxy

• Clarifying the cache key

HTTPbis Status
• Currently on draft -05

• Major editorial rewrites starting

• p1 messaging

• p5 caching

• After that, most should be downhill

• “six months”

Status of the
Implementations

Implementations
• Clients

• IE, Mozilla, Opera, Safari, wget, curl, serf, Perl, Python, Ruby, Java

• Abstractions: XmlHttpRequest, Prototype.js, Flash APIs

• Servers

• Apache, IIS, Lighttpd, your router, phone and fridge

• Abstractions: filesystems, CGI, WSGI, Servlet

• Intermediaries

• Squid, Network Appliance, ISA, HAProxy, tinyproxy, load
balancers, firewalls

• Not many abstractions (yet)

• 20%-30% of Web traffic goes through a proxy

• Caches in clients and intermediaries

• starting to show up in Python, Ruby...

HTTP Versions
• Most everything these days is HTTP/1.1,

except...

• Squid (full 1.1 coming)

• wget

• a few libraries

• very old browsers, servers, libraries

• That’s OK

Core Methods
• GET, POST - universally supported

• PUT, DELETE

• A few clients can’t generate (e.g., Safari2 XHR)

• Intermediaries can be configured to block, but
usually aren’t (except the paranoid and mobile)

• Biggest limitation is W3C languages

• XSLT, HTML forms

• Result: X-HTTP-Method header (Google) or
query params (e.g., ?real-method=POST)

“Advanced” Methods
• OPTIONS

• Hard to configure in servers

• Isn’t cacheable... oops.

• Result: only used for esoteric protocols (*dav)

• Extension methods - FOO

• A number of clients don’t allow (e.g., XHR)

• Intermediaries often block (e.g., Squid, L4 balancers)

• Result: This probably isn’t so horrible

URIs
• Mobile clients limit to as small as 256

• Browsers

• IE: ~2k

• The rest: really really big

• Intermediaries are OK up to about 4k; some go higher

• Servers can be configured (or replaced)

• Result: people putting queries in POSTs

• application-specific and frameworks

• frameworks doing this leads to gratuitous tunnelling

• HTTPbis recommendation likely to be around 8k

Headers
• Some length limits (e.g. 20k total in Squid)

• Almost no-one handles line continuations

• Result: effectively profiled out

• Disallowed by latest HTTPbis changes

• Connection header control: not great

• Result: extending protocol difficult

• Trailers aren’t well-supported at all

• Result: debug, status more difficult

Partial Content
• Content-Range / 206

• Biggest use: PDF

• Some caches don’t store partial content

• e.g., Squid

• Flash URL API can access ranges, but
VideoPlayer, etc. don’t use it

• Result:
$vidID = $_GET["vidID"];
$vidPosition = $_GET["vidPosition"];

Redirection
• Most* current browsers will redirect POST

when they get a 307 Temporary Redirect

• ... but not PUT or DELETE

• ... and not a 301 or 302

• * except Safari - it doesn’t even do 307

• This is relatively new

• Result: login and lose your POST body

Caching
• Basic conformance is there

• max-age, no-cache, no-store, Expires, IMS, INM

• Invalidation isn’t implemented*

• Result: don’t see your blog comments

• Updating headers on 304 and HEAD is spotty

• Warnings aren’t generated

• Curl sends Pragma: no-cache by default

• Result: Opportunity cost

Connection Handling
• Browsers limited to two concurrent

connections to each server

• ouch!

• Result: BATCH, hosting on multiple names, etc.

• Being fixed in HTTPbis

Pipelining
• Clients

• Only Opera does by default (lots of heuristics)

• The brave can turn it on in Mozilla

• A few libraries allow (e.g., Serf)

• Most intermediaries will be OK with it, but won’t
forward

• Many servers handle it just fine; a few don’t

• Risks: interleaved or out-of-order responses

• Predominant use today: SVN (thanks to Serf)

• Result: “waterfall” of requests; CSS spriting

The Cookie Cesspit
• There is no cookie specification.

• Netscape isn’t complete

• RFC2109 doesn’t reflect current practice

• Opera only major implementation of RFC2965

• Parsing raw dates is painful
• Set-Cookie: a=1; Expires=Thu, 24 July 2008 00:00:00

• requires special case handling

• Result: libraries required.

Where
Next for
HTTP?

Tests, tests, tests
• Most knowledge today is ad hoc

• Some tools (e.g., co-advisor)

• Needed:

• open source test framework

• common test corpus

• messaging, semantics...

• For clients, intermediaries, servers and
caches

Authentication
• Basic is interoperable, but not secure

• Digest is more secure, but not terribly
interoperable

• Many newer requirements not addressed

• Phishing

• Delegated auth

• OAuth BoF last week in IETF Minneapolis

• Other efforts still coalescing

Better Transport
• head-of-line blocking STILL an issue

• Pipelining isn’t well-supported, and doesn’t
completely solve the problem

• HTTP doesn’t guarantee integrity

• except with Content-MD5 (which no one does)

• HTTP-over-SCTP

• Great for lossy / long-distance networks

• proxy-to-proxy overlays

• uDel, Cisco

PATCH
• “Restful” APIs are starting to abuse PUT

• “update that with this...”

• PATCH allows you to apply a diff to a
resource

• Currently an Internet-Draft

Prefer Header
• Lets a client state what it wants;

• Full content in response body

• Status message in response body

• No response body

• E.g., POST /order-handler

• Currently a (quiet) Internet-Draft

Link Header
• Under-developed part of the Web arch:

typed links

• Advertise/discover links in HTTP headers

• “this invalidates <foo>”

• “the previous one is <bar>”

• “edit this over at <baz>”

• In RFC2068, taken out of RFC2616

• Bringing back as an internet-draft

Caching Refinements
• stale-while-revalidate

• hide server latency from clients

• stale-if-error

• hide server errors from clients

• Out-of-band change monitoring

• Using resource relationships to invalidate

• Explicit cache key

HTTP Software
• Higher-level (but still RESTful) abstractions

• e.g., webmachine

• Better feature set coverage

• e.g,. Rack::Cache

• Intermediary building blocks

• high performance/concurrency

• e.g., xLightweb

A Word on O2.0
• OpenID, OAuth, XmlHttpRequest, HTML5,

Comet, “reliable” HTTP, BATCHing, Gears...

• General tendency to

• use least-common-denominator tech

• use familiar tools

• ignore intermediaries

• fail to consider overall architecture

• High opportunity cost

Take-Aways
• Implementations are (obviously) usable, but

• They sometimes impose arbitrary limits

• They don’t expose some important controls

• Developers will always take the easiest path

• Not implementing because no-one uses it is a
self-fulfilling prophesy

• HTTPbis is an opportunity to

• get implementers together

• clarify ambiguities

• improve interop

• make HTTP a more stable basis for the next 10+ years

• http://tools.ietf.org/wg/httpbis/

• http://tinyurl.com/65e9lb [implementation sheets]

• http://coad.measurement-factory.com/

• http://www.mnot.net/blog/2007/06/20/proxy_caching

• http://www.mnot.net/blog/2006/05/11/browser_caching

Resources

