
ThoughtWorks

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

the productive
programmer: practice

10 ways to improve
your code

from whence?

2 parts:

mechanics

practices

2 parts:

mechanics

practices

composed method

1

Keep all of the operations in a method at the
same level of abstraction.

Divide your program into methods that
perform one identifiable task.

This will naturally result in programs with many
small methods, each a few lines long.

composed method

refactoring to
composed method

populate()

getDatabaseConnection()

createResultSet()

addPartToListFromResultSet()

PartDb

populate()

getDatabaseConnection()

createResultSet()

addPartToListFromResultSet()

PartDb

getDatabaseConnection()

BoundaryBase

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

getDatabaseConnection()

BoundaryBase

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

BoundaryBase

PartDb

populate()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

BoundaryBase

addEntityToListFromResultSet()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

addEntityToListFromResultSet()

populate()

BoundaryBase

populate()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

BoundaryBase

BoundaryBase

PartDb

large number of very cohesive methods

shorter methods easier to test

method names become documentation

discover reusable assets that you didn’t know
were there

benefits of composed
method

test-driven
development

test-driven design2

creates consumption awareness

first consumer

think about how the rest of the world uses this
class

design benefits of tdd

cleaner metrics

forces mocking of dependent objects

naturally creates composed method

design benefits of tdd

static analysis

3

byte-code analysis:
findbugs

bad practice
violation of recommended & essential
coding practice

correctness
probable bug

dodgy
confusing, anomalous, written poorly

bug categories

good citizenship

4

static methods

Math.sqrt(25)

Math.sqrt()

mixes responsibilities

singleton is bad because:

the object version of global variables

untestable

mixing static + state

singleton

testable!

1. create a pojo for the business behavior

simple

also testable

2. create a factory to create the pojo

avoiding singletons

yagni

you ain’t gonna need it5

increases software entropy

build the simplest thing that we need right now

don’t indulge in speculative development

leads to frameworks

only saves time if you can guarantee you
won’t have to change it later

discourages gold plating

This is just
what they need!

changeability

anticipatory
design

refactorable

rate of change

higherlower

corporate code smells

6. We have an Architect who reviews all code pre-
checkin and decides whether or not to allow it
into version control.

7. We can’t use any open source code because
our lawyers say we can’t.

8. We use WebSphere because...(I always stop
listening at this point)

10. We invented our own web/persistence/
messaging/caching framework because none of
the existing ones was good enough.

9. We bought the entire tool suite (even though
we only needed about 10% of it) because it was
cheaper than buying the individual tools.

1. There is a reason that WSAD isn’t called
WHAPPY.
2. The initial estimate must be within 15% of the
final cost, the post-analysis estimate must be
within 10%, and the post-design estimate must be
with 5%
3. We don’t have time to write unit tests (we’re
spending too much time debugging)

5. The only JavaDoc is the Eclipse message
explaining how to change your default JavaDoc
template.

4. We keep all of our business logic in stored
procedures...for performance reasons.

question authority6

angry monkeys

test names
testUpdateCacheAndVerifyThatItemExists() {

}

test_Update_cache_and_verify_that_item_exists() {

}

non-intuitive

pair programming
studies

after adjusting, pairs produced code 15%
more slowly than individuals...

pair programming
studies

...with 15% fewer defects

slap

7 single level of
abstraction principle

composed method => slap

keep all lines of code in a method at the same
level of abstraction

jumping abstraction layers makes code hard to
understand

even if it means single-line methods

refactor to slap

s l a p

polyglot

 programming

8

leveraging existing
platforms with languages

targeted at specific
problems and
applications

schedule pressure

massively parallel threading

use a functional language: jaskell, scala

jruby on rails, grails

looming problems/
opportunities

writing more declarative code via dsls

build fluent interfaces

looming problems/
opportunities

swiby: jruby + swing

every nuance

9

no longer true

reflection

“reflection is slow”

elegant solutions to problems

java’s back alleys

regular expressions &

learn the nuances of
java...

...then tell the other
people on your project

anti-objects

10

“The metaphor of objects can go too far by making
us try to create objects that are too much inspired
by the real world. “

“...an antiobject is a kind of object that appears to
essentially do the opposite of what we generally
think the object should be doing.”

collaborative diffusion

ThoughtWorks

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

questions?

please fill out the session evaluations
slides & samples available at nealford.com

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

An Initial Investigation of Test Driven Development in Industry -
Laurie Williams, Boby George
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

AntiPatterns Catalog
http://c2.com/cgi/wiki?AntiPatternsCatalog

The legend of the leaning tower
http://physicsworld.com/cws/article/print/16806

findbugs
http://findbugs.sourceforge.net/

pmd/cpd
http://pmd.sourceforge.net/

resources

resources
Smalltalk Best Practice Patterns Kent Beck
Prentice Hall PTR (October 13, 1996)
ISBN-10: 013476904X

Polyglot Programming
http://memeagora.blogspot.com/2006/12/polyglot-programming.html

Optical Illusions
http://en.wikipedia.org/wiki/Optical_illusion

Collaborative Diffusion: Programming
Anti-objects - A Repenning
http://www.cs.colorado.edu/~ralex/papers/PDF/OOPSLA06antiobjects.pdf

resources

http://www.cs.utah.edu/~lwilliam/Papers/
ieeeSoftware.PDF

http://collaboration.csc.ncsu.edu/laurie/Papers/
XPSardinia.PDF

http://www.xprogramming.com/Practices/PracPairs.html

http://c2.com/cgi/wiki?PairProgramming

pair programming

