
Behaviour-Driven
Development

A road to effective design and clean code

Dan North - ThoughtWorks

© 2008 Dan North, ThoughtWorks

My name is Dan

• I am a developer
•

I am a coach
•

I am your guide

2

© 2008 Dan North, ThoughtWorks

Part 1: ineffective design
and ugly code

3

© 2008 Dan North, ThoughtWorks

Project failures - a field guide

• The project comes in too late
• or costs too much to finish

• The application does the wrong thing
• It is unstable in production
• It breaks the rules
• The code is impossible to work with

4

© 2008 Dan North, ThoughtWorks

How we deliver software

• Top-down
•

Bottom-up
•

Why do we do this?

5

© 2008 Dan North, ThoughtWorks

Part 2: effective design
and clean code

© 2008 Dan North, ThoughtWorks

If we could deliver better

• Only focus on high-value features
• Flatten the cost of change

• of anything, at any stage

• Prioritise often, change often
• Adapt to feedback
•

Learn!

7

© 2008 Dan North, ThoughtWorks

What we would need

• Streaming requirements
• Evolving design
• Code we can change
• Frequent code integration
• Run all the regression tests often

8

© 2008 Dan North, ThoughtWorks

Part 3: Getting there
with BDD

© 2008 Dan North, ThoughtWorks

A definition of BDD

“Behaviour-driven development is about
implementing an application by

describing it from the point of view of
its stakeholders”

- Me :)

10

© 2008 Dan North, ThoughtWorks

BDD is derivative

• “Second generation” agile methodology
• - XP, especially TDD and CI
• - Domain-Driven Design
• - Acceptance Test-Driven Planning
• - Neurolinguistic Programming (NLP)
• - Systems Thinking

11

© 2008 Dan North, ThoughtWorks

What makes BDD?
• Getting the words right
• Enough is enough

• ...agree on “Done”

• Outside-in
• Interactions
•

People over Process!

12

© 2008 Dan North, ThoughtWorks

“Getting the words right”

• “When I use a word”, said Humpty Dumpty in
a rather scornful tone, “it means just what I

want it to mean, neither more nor less”

• Lewis Carroll - Through the Looking Glass

13

© 2008 Dan North, ThoughtWorks

“Getting the words right”

• Model your domain
• ...and identify your core domain

• Create a shared language
• ...and make it ubiquitous

• Determine its bounded context
• ...and think about what happens at the edges

14

© 2008 Dan North, ThoughtWorks

“Enough up-front thinking”

• Identify the desired outcomes
• Do enough to feel safe to estimate

• ...and keep a note of your assumptions

• Then “blink estimate” - with people you trust
• ...because anything else is false confidence

•

Estimation is fractal - don’t misunderestimate!

15

© 2008 Dan North, ThoughtWorks

A story is a unit of delivery

As an Anaesthetist

I want to view the Patient’s surgical history

So that I can choose the most suitable gas

Story 28 - View patient details

16

© 2008 Dan North, ThoughtWorks

Try to focus on the value

In order to choose the most suitable gas

an Anaesthetist

wants to view the Patient’s surgical history

Story 28 - View patient details

17

© 2008 Dan North, ThoughtWorks

Try to focus on the value

Story 29 - Log patient details

In order to choose the most suitable gas

an Anaesthetist

wants other Anaesthetists to log the
Patient’s surgery details for later retrieval

18

© 2008 Dan North, ThoughtWorks

Agree on “Done”
Define acceptance criteria as scenarios

Scenario: existing patient with history

Given we have a patient on file

And the patient has had previous surgery

When I request the Patient’s history

Then I should see all the previous treatments

19

© 2008 Dan North, ThoughtWorks

Automate the scenarios
Each step corresponds to running code

Given we have a patient on file

In Ruby:

Given “we have a patient on file” do
 @patient = Patient.create
end

In Java:

@Given(“we have a patient on file”)
public void createPatient() {
 patient = patientFactory.create();
}

20

© 2008 Dan North, ThoughtWorks

Code-by-Example to
implement

• Also known as TDD
• Start at the edges with what you know
• Implement outermost objects and operations
• Discover collaborators, working inwards

• and mock them out for now

• Repeat until “Done”

21

© 2008 Dan North, ThoughtWorks

Then bring it all together

• Examples become code tests
• …and documentation
•

Scenarios become acceptance tests
• ...which become regression tests
•

Automation is key

22

© 2008 Dan North, ThoughtWorks

Inside-out - an example

• Map<int, Map<int, int>> portfoliosByTraderId;

if (portfolioIdsByTraderId.get(trader.getId())
 .containsKey(portfolio.getId())) {...}

•

Becomes:
•

if (trader.canView(portfolio)) {...}

23

© 2008 Dan North, ThoughtWorks

The team

• The stakeholders
• The BAs
• The QAs
• The developers
• The project manager

24

© 2008 Dan North, ThoughtWorks

The destination

© 2008 Dan North, ThoughtWorks

Effective Design and
Clean Code

• ...has tangible stakeholder value
• ...is delivered on time, incrementally
• ...is easy to deploy and manage
• ...is robust in production
• ...is easy to understand and communicate
•

BDD is a step in the right direction
26

© 2008 Dan North, ThoughtWorks

Thank you

• Any questions?

• dan.north@thoughtworks.com

• http://dannorth.net

• http://lizkeogh.com
• http://jbehave.org

• http://rspec.info

27

© 2008 Dan North, ThoughtWorks

Bibliography

• Extreme Programming explained (2nd edition)
- Kent Beck

• Domain-Driven Design - Eric Evans
• The Art of Systems Thinking

• and

• The Way of NLP - Joseph O’Connor

28

