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My name is Dan

• I am a developer
•

I am a coach
•

I am your guide
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Part 1: ineffective design 
and ugly code

3



© 2008 Dan North, ThoughtWorks

Project failures - a field guide

• The project comes in too late
• or costs too much to finish

• The application does the wrong thing
• It is unstable in production
• It breaks the rules
• The code is impossible to work with
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How we deliver software

• Top-down
•

Bottom-up
•

Why do we do this?
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Part 2: effective design 
and clean code
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If we could deliver better

• Only focus on high-value features
• Flatten the cost of change

• of anything, at any stage

• Prioritise often, change often
• Adapt to feedback
•

Learn!
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What we would need

• Streaming requirements
• Evolving design
• Code we can change
• Frequent code integration
• Run all the regression tests often
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Part 3: Getting there 
with BDD
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A definition of BDD

“Behaviour-driven development is about 
implementing an application by 

describing it from the point of view of 
its stakeholders”

- Me :)
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BDD is derivative

• “Second generation” agile methodology
• - XP, especially TDD and CI
• - Domain-Driven Design
• - Acceptance Test-Driven Planning
• - Neurolinguistic Programming (NLP)
• - Systems Thinking
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What makes BDD?
• Getting the words right
• Enough is enough

• ...agree on “Done”

• Outside-in
• Interactions
•

People over Process!
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“Getting the words right”

• “When I use a word”, said Humpty Dumpty in 
a rather scornful tone, “it means just what I 

want it to mean, neither more nor less”

• Lewis Carroll - Through the Looking Glass
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“Getting the words right”

• Model your domain
• ...and identify your core domain

• Create a shared language
• ...and make it ubiquitous

• Determine its bounded context
• ...and think about what happens at the edges
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“Enough up-front thinking”

• Identify the desired outcomes
• Do enough to feel safe to estimate

• ...and keep a note of your assumptions

• Then “blink estimate” - with people you trust
• ...because anything else is false confidence

•

Estimation is fractal - don’t misunderestimate!
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A story is a unit of delivery

As an Anaesthetist

I want to view the Patient’s surgical history

So that I can choose the most suitable gas

Story 28 - View patient details
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Try to focus on the value

In order to choose the most suitable gas 

an Anaesthetist

wants to view the Patient’s surgical history

Story 28 - View patient details
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Try to focus on the value

Story 29 - Log patient details

In order to choose the most suitable gas 

an Anaesthetist

wants other Anaesthetists to log the 
Patient’s surgery details for later retrieval
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Agree on “Done”
Define acceptance criteria as scenarios

Scenario: existing patient with history

Given we have a patient on file

And the patient has had previous surgery

When I request the Patient’s history

Then I should see all the previous treatments
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Automate the scenarios
Each step corresponds to running code

Given we have a patient on file

In Ruby:

Given “we have a patient on file” do
  @patient = Patient.create
end

In Java:

@Given(“we have a patient on file”)
public void createPatient() {
  patient = patientFactory.create();
}
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Code-by-Example to 
implement

• Also known as TDD
• Start at the edges with what you know
• Implement outermost objects and operations
• Discover collaborators, working inwards

• and mock them out for now

• Repeat until “Done”
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Then bring it all together

• Examples become code tests
• …and documentation
•

Scenarios become acceptance tests
• ...which become regression tests
•

Automation is key
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Inside-out - an example

• Map<int, Map<int, int>> portfoliosByTraderId;

if (portfolioIdsByTraderId.get(trader.getId())
  .containsKey(portfolio.getId())) {...}

•

Becomes:
•

if (trader.canView(portfolio)) {...}
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The team

• The stakeholders
• The BAs
• The QAs
• The developers
• The project manager
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The destination
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Effective Design and
Clean Code

• ...has tangible stakeholder value
• ...is delivered on time, incrementally
• ...is easy to deploy and manage
• ...is robust in production
• ...is easy to understand and communicate
•

BDD is a step in the right direction
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Thank you

• Any questions?

• dan.north@thoughtworks.com

• http://dannorth.net

• http://lizkeogh.com
• http://jbehave.org

• http://rspec.info
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