
Strongly Typed
Domain Specific Embedded

Languages

22 November 2008 QCON 1

Languages

Lennart Augustsson
Standard Chartered Bank
lennart@augustsson.net

Overview
• Mostly Haskell

– Types, types, types

• A sampling of DSELs I’ve made
– LLVM bindings
– Paradise, Excel generation

22 November 2008 QCON 2

– Paradise, Excel generation
– Bluespec, hardware design

Who am I?
• Languages over the years

– 1990-1995, hbc – the first Haskell compiler
– 1995-1996, R@VE – a DSL for airline crew

scheduling
– 1997-1998, Delf – a DSL for (Swedish) tax

22 November 2008 QCON 3

– 1997-1998, Delf – a DSL for (Swedish) tax
calculation

– 2000-2005, Bluespec – a DSL for hardware
design

– 2006-2008, Paradise – a DSEL for pricing models
– 2008-, more DSELs

What is a Domain Specific
Language?

A programming language tailored for a particular
application domain, which captures precisely the
semantics of the application domain -- no more, no less.

22 November 2008 QCON 4

semantics of the application domain -- no more, no less.

A DSL allows one to develop software for a particular
application domain quickly, and effectively, yielding
programs that are easy to understand, reason about,
and maintain.

Hudak

The Cost Argument

Total
SW
cost

Conventional
methodology

22 November 2008 QCON 5

Software life cycle

DSL-based
methodologyStart up

cost

The Problem with DSLs

•DSLs tend to grow: adding procedures, modules, data
structures…

•Language design is difficult and time-consuming; large
parts are not domain specific.

22 November 2008 QCON 6

parts are not domain specific.

•Implementing a compiler is costly (code-generation,
optimisation, type-checking, error messages…)

Start up costs may be substantial!

Domain Specific Embedded
Languages

Why not embed the DSL as a library
in an existing host language?

+ -

22 November 2008 QCON 7

•Inherit non-domain-specific
parts of the design.
•Inherit compilers and tools.
•Uniform “look and feel”
across many DSLs
•DSLs integrated with full
programming language, and
with each other.

+

•Constrained by host language
(syntax, type system, etc).
•Error messages.

-

The Cost Argument Again

Total
SW
cost

Conventional
methodology

DSL-based
methodology

22 November 2008 QCON 8

Software life cycle

methodology

Start up
cost

DSEL-based
methodology

Much lower start-up cost

What makes a good host language?

• Light weight syntax
– Because we want to tailor the syntax
– Haskell, Lisp, Ruby, Python, Smalltalk, Scala, …

• Easy to create suspensions
– Because we want to make control structures

22 November 2008 QCON 9

– Because we want to make control structures
– Haskell, Lisp, Ruby, Smalltalk, Scala, …

• Powerful and malleable type system
– Haskell, Scala, …

Why strong typing?
• Helps in designing software.
• Eliminates a lot of testing.
• More efficient.
• Easier to refactor.

22 November 2008 QCON 10

DSEL
• There are two kinds of embeddings:

– Shallow embedding, the DSEL uses the values
and types of the host language.

– Deep embedding, the DSEL builds an abstract
syntax tree, using its own types.

22 November 2008 QCON 11

syntax tree, using its own types.

Shallow/deep embedding
• A language for drawing circles

twoCircles = do
circle (2, 2) 4
circle (1.5, 4) 2.5

22 November 2008 QCON 12

• Draws two circles at the given coordinates
and with the given radius.

Shallow embedding
• Running the program draws the circles

22 November 2008 QCON 13

• Type of the circle function
circle :: (Double, Double) -> Double -> IO ()

• Uses ordinary Haskell types

Deep embedding
• Running the program generates an abstract

syntax tree:
Stmts [Circle (Dbl 2, Dbl 2) (Dbl 4),

Circle (Dbl 1.5, Dbl 4) (Dbl 2.5)]

• Type of the circle function

22 November 2008 QCON 14

• Type of the circle function
circle :: (Expr Double, Expr Double) ->

Expr Double -> Stmt ()

• Uses “embedded” types (GADTs or phantom
types)

• Allows further processing of the program.

Shallow/deep embedding
• Shallow embedding is easier
• Deep embedding allows more processing
• Deep embedding is trickier to make strongly

typed.

22 November 2008 QCON 15

• The example program, twoCircles, has no
notion of what embedding it is.

• In fact, in can be both!
twoCircles :: (CircleMonad m) => m ()

The Haskell type system
(not a Haskell tutorial)

• Base types
– Int, Int8, Int16, …

– Word, Word8, Word16, …

– Integer

– Char

22 November 2008 QCON 16

– Char

– Float, Double

• Function type
– S -> T

The Haskell type system
(not a Haskell tutorial)

• Data types
– Enumerations

• data Color = Red | Green | Blue

– Records
• data Coord =

22 November 2008 QCON 17

• data Coord =
Coord { x :: Double, y :: Double }

– Unions
• data Shape = Circle { radius :: Int }

| Rect { width,height :: Int }

The Haskell type system
(not a Haskell tutorial)

• Data types
– Recursive types

• data ListOfInt = Nil | Cons Int ListOfInt

– Parameterized types
• data BinTree a = Empty

22 November 2008 QCON 18

• data BinTree a = Empty
| Node { left, right :: BinTree a,

value :: a }

– List
• [a]

– Tuples
• (a,b), (a,b,c), (a,b,c,d), …

The Haskell type system
(not a Haskell tutorial)

• Type variables
– Used to express parametric polymorphism
– swap :: (a, b) -> (b, a)

swap (x, y) = (y, x)

– id :: a -> a

22 November 2008 QCON 19

id x = x

– length :: [a] -> Int

– map :: (a -> b) -> [a] -> [b]

The Haskell type system
(not a Haskell tutorial)

• Type classes
– What is the type of == ?

• Almost any two values of the same type can be
compared.

– What is the type of + ?

22 November 2008 QCON 20

– What is the type of + ?
• Types like Int and Double can be added.

– Why not traditional overloading?
• Type inference, e.g., refl x = x == x

• Haskell type classes are collections of types
– I.e., more like OO interfaces than classes.

The Haskell type system
(not a Haskell tutorial)

• == again
– (==) :: a -> a -> Bool

• WRONG! All values cannot be compared.
– (==) :: (Eq a) => a -> a -> Bool

A context.

22 November 2008 QCON 21

A context.
Constrains a.

The Haskell type system
(not a Haskell tutorial)

• Declaring Eq

class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where

22 November 2008 QCON 22

instance Eq Int where
(==) = primIntEqual

instance Eq Double where
(==) = primDoubleEqual

The Haskell type system
(not a Haskell tutorial)

• More Eq

instance (Eq a, Eq b) => Eq (a, b) where
(x,y)==(z,w) = x==z && y==w

instance (Eq a) => Eq [a] where

22 November 2008 QCON 23

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
_ == _ = False

The Haskell type system
(not a Haskell tutorial)

• What about + ?

class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a - > a - > a

Whoa!
Overloaded on the

return type.

22 November 2008 QCON 24

(*) :: a - > a - > a
fromInteger :: Integer -> a

instance Num Double where
(+) = primDoubleAdd
(-) = primDoubleSub
(*) = primDoubleMul
fromInteger = primDoubleFromInteger

The Haskell type system
(not a Haskell tutorial)

• What about numeric literals?
– Writing, e.g., 42 in Haskell really means

(fromInteger 42)

– Allows each type to treat literals the way it likes.
– Arbitrary precision for the literal.

22 November 2008 QCON 25

– Arbitrary precision for the literal.
– Great for DSEL! Can use numeric literals for new

numeric types.

– inc :: (Num a) => a -> a
inc x = x + 1

A small example
-- Solving a quadratic equation,
-- i.e. a*x^2 + b*x + c = 0
solve (a, b, c) = ((-b+a)/(2*r), (-b-r)/(2*a))

where r = sqrt(b^2 – 4*a*c)

22 November 2008 QCON 26

solve :: (Floating a) => (a, a, a) -> (a, a)

Case Study, LLVM
• LLVM (Low Level Virtual Machine) is an

assembly language (in SSA form).
• Programming language bindings allow code to

be generated by a batch compiler or a JIT.
• LLVM API is a large set of procedures to

22 November 2008 QCON 27

• LLVM API is a large set of procedures to
create instructions, basic blocks, etc.

• Bindings exist for, e.g., C++, O’Caml, Haskell

Case Study, LLVM
• Text file syntax:

define i32 @mul_add(i32 %x, i32 %y, i32 %z) {
entry:

%tmp = mul i32 %x, %y
%tmp2 = add i32 %tmp, %z

22 November 2008 QCON 28

%tmp2 = add i32 %tmp, %z
ret i32 %tmp2

}

/* Corresponding C code */
int mul_add(int x, int y, int z) {

return x * y + z;
}

Case Study, LLVM
• In C++:

Constant* c = mod->getOrInsertFunction("mul_add",
/*ret type*/ IntegerType::get(32),
/*args*/ IntegerType::get(32),

IntegerType::get(32),
IntegerType::get(32),
NULL);

Function* mul_add = cast<Function>(c);
Function::arg_iterator args = mul_add - >arg_begin();
Value* x = args++;

22 November 2008 QCON 29

Function::arg_iterator args = mul_add - >arg_begin();
Value* x = args++;
Value* y = args++;
Value* z = args++;
BasicBlock* block = BasicBlock::Create("entry", mul_add);
IRBuilder builder(block);
Value* tmp = builder.CreateBinOp(Instruction::Mul ,

x, y, "tmp");
Value* tmp2 = builder.CreateBinOp(Instruction::Add ,

tmp, z, "tmp2");
builder. CreateRet (tmp2);

Case Study, LLVM
• In Haskell:

mul_add :: CodeGen (Int32 -> Int32 -> Int32 ->
IO Int32)

mul_add = createFunction $ \ x y z -> do
createBasicBlock

22 November 2008 QCON 30

createBasicBlock
tmp <- mul x y
tmp2 <- add tmp z
ret tmp2

Case Study, LLVM
• So what about types?
• LLVM has a rich type system

– integer: i1, …, i8, …, i16, … i32, …
– floating: float, double, …
– first class: integer, floating, pointer, array, …

22 November 2008 QCON 31

– first class: integer, floating, pointer, array, …
– primitive: label, void, floating
– derived: integer, array, function, pointer, …
– array: [<# elements> x <elementtype>]
– function: <returntype>(<parameter list>)
– …

Case Study, LLVM
• Samples instructions:

– ret void

ret <type> <value>
• <type> must be first class

– <result> = add <ty> <op1>, <op2>

22 November 2008 QCON 32

– <result> = add <ty> <op1>, <op2>
• Arguments must be integer, floating, or vector

– <result> = xor <ty> <op1>, <op2>
• Arguments must be integer or vector

– <result> = call <ty> <fnptrval>(<args>)
• Args must be first class, function must match args

Case Study, LLVM
• The C++ code enforces very few of the type

restrictions.
• What happens if we make a type error?

– Caught by a runtime sanity check, exception
thrown.

22 November 2008 QCON 33

thrown.
– Uncaught, segmentation fault or just a wrong

answer.

Case Study, LLVM
• Introduce type classes for LLVM types

class IsType a where
typeRef :: a -> TypeRef

class (IsType a) => IsArithmetic a
class (IsArithmetic a) => IsInteger a

22 November 2008 QCON 34

class (IsArithmetic a) => IsInteger a
class (IsArithmetic a) => IsFloating a
class (IsType a) => IsPrimitive a
class (IsType a) => IsFirstClass a
class (IsType a) => IsFunction a

Case Study, LLVM
• Put corresponding Haskell types in classes

instance IsType Double where typeRef _ = doubleType
instance IsType () where typeRef _ = voidType
instance IsType Bool where typeRef _ = int1Type
instance IsType Int8 where typeRef _ = int8Type
instance IsType Int16 where typeRef _ = int16Type

22 November 2008 QCON 35

instance IsType Int16 where typeRef _ = int16Type
instance IsType Int32 where typeRef _ = int32Type
…
instance (IsType a) => IsType (Ptr a) where

typeRef ~(Ptr a) = pointerType (typeRef a)

instance (IsFirstClass a, IsFunction b) =>
IsType (a->b) where …

Case Study, LLVM
• Put corresponding Haskell types in classes

instance IsArithmetic Double
instance IsArithmetic Int32
…
instance IsFloating Double
…

22 November 2008 QCON 36

…
instance IsInteger Int32
…

• And a few more pages of this

Case Study, LLVM
• Instructions functions simply call the (type

unsafe) LLVM functions via FFI.
• Some instruction types

add :: (IsArithmetic a) => a -> a -> CodeGen r a
xor :: (IsInteger a) => a - > a - > CodeGen r a

22 November 2008 QCON 37

xor :: (IsInteger a) => a - > a - > CodeGen r a
ret :: (IsFirstClass a) => r -> CodeGen r ()
call :: (CallArgs f g) => Function f -> g

Case Study, LLVM
• Conclusions

– Haskell makes it possible to make a strongly
typed interface to external libraries.

– Complex types and relationships can be encoded
with type classes.

22 November 2008 QCON 38

with type classes.

Case Study, Excel
• Paradise, a DSEL for generating Excel
• Why?

– Excel is terrible for software reuse.
– Copy & paste only “abstraction” mechanism
– But Excel is a familiar UI; people like it

22 November 2008 QCON 39

– But Excel is a familiar UI; people like it
– So don’t write Excel, generate it

• Actually two DSELs
– Computation
– Layout

Case Study, Excel
• Example: two inputs, output the sum
• Computation

example = do

x < - input 2

22 November 2008 QCON 40

x < - input 2

y <- input 3

z <- output (x+y)

• Layout
return (row [view x, view y, view z])

Case Study, Excel
• Running this Haskell code generates an Excel

sheet

22 November 2008 QCON 41

x <- input 2 y <- input 3 z <- output (x+y)

Case Study, Excel
• Excel is dynamically typed, few types:

– double, string, bool (+ errors)

– Many serious Excel users have additional types
representing objects (via Excel addins), but encoded as,
e.g., strings.

22 November 2008 QCON 42

Case study, Excel
• Deep embedding

– Need AST
– Running the DSEL code generates a

spreadsheet.

• We need an AST for Excel

22 November 2008 QCON 43

• We need an AST for Excel

Case study, Excel
• Type of Excel expressions

data Exp =
LitDbl Double

| LitStr String
| LitBol Bool
| Apply Func [Exp]

22 November 2008 QCON 44

| Apply Func [Exp]
| Var Id

type Func = String
type Id = String

• But this is not type safe!
– E.g., Apply “not” [LitDbl 1.2]

Case study, Excel
• Trick, use “phantom types”.
• I.e., create a well typed wrapper, and only

expose this to the user.

data E a = E Exp

22 November 2008 QCON 45

data E a = E Exp

Type variable not
mention on the right.

It’s a phantom.

Case study, Excel
• Make a numeric instance.

instance Num (E Double) where
E x + E y = E (Apply “+” [x, y])
E x – E y = E (Apply “-” [x, y])
E x * E y = E (Apply “*” [x, y])
fromInteger i = E (LitDbl (fromInteger i))

22 November 2008 QCON 46

fromInteger i = E (LitDbl (fromInteger i))

• So now
1 + 2 * 3 :: E Double

is
E (Apply “+” [LitDbl 1.0,

Apply “*” [LitDbl 2.0,
LitDbl 3.0]])

Case study, Excel
• Types for input and output

class Cell a where …
instance Cell Double where …
instance Cell String where …
instance Cell Bool where …

Monad to handle
cell identity

22 November 2008 QCON 47

instance Cell Bool where …

input :: (Cell a) => E a -> Gen (E a)
output :: (Cell a) => E a -> Gen (E a)

instance (Cell a,Cell b) => Cell (a,b)
instance (Cell a,Cell b,Cell c) => Cell (a,b,c)

Case study, Excel
• A little reuse, solving quadratics in Excel

solve = do
abc <- input (1, 0, 0)
rs <- output (solve abc)
return (column [view abc, view rs])

22 November 2008 QCON 48

return (column [view abc, view rs])

• Note, the same code (even compiled!) for
solve will work in the Excel code.

Case study, Excel
• Conclusions

– Type classes are useful to encode various
restrictions.

– An unityped deep embedding can be made type
safe with phantom types.

22 November 2008 QCON 49

safe with phantom types.

Case study, Bluespec
• Bluespec is a hardware design language

– www.bluespec.com

• Bluespec is a DSL
• The main features of Bluespec can be done

as a DSEL in Haskell

22 November 2008 QCON 50

as a DSEL in Haskell
– In fact Atom is a DSEL similar to Bluespec

• In hardware bits are important
– Need to know the number of bits a value needs

when stored.

Case study, Bluespec
• A snippet of code

– Defines two registers to hold values.
– Defines a rule that produces some combinational

logic that executes when applicable.

22 November 2008 QCON 51

stupidAdder = do
x <- mkReg (42 :: Int8)
y <- mkReg (12 :: Int8)
rule (x > 0) $ do

x <== x – 1
y <== y + 1

Case study, Bluespec
• What can we store in a register?

Anything that can be turned into a fixed
number of bits.

• Here is how we can express this with Haskell
types:

22 November 2008 QCON 52

types:

class Bits a where
type Size a
toBits :: a -> Bit (Size a)
fromBits :: Bit (Size a) -> a

Case study, Bluespec
• We need to express sizes in types, as to

make bit width statically typed.
• Haskell does not have a notion of numbers on

the type level, we have to build it.
• For simplicity, we use unary encoding of

22 November 2008 QCON 53

• For simplicity, we use unary encoding of
numbers.

data Zero
data Succ n

type One = Succ Zero
type Two = Succ One

Case study, Bluespec
• We want be able to convert from the type

level to the value level.

class Nat a where
toValue :: a -> Int

instance Nat Zero where

22 November 2008 QCON 54

instance Nat Zero where
toValue _ =

instance (Nat n) => Nat (Succ n) where
toValue _ = 1 + toValue (undefined :: n)

-- typical use
… toValue (undefined :: T) …

Case study, Bluespec
• Type level addition.

– Yes, the syntax is weird.

type family Add m n
type instance Add Zero n = n
type instance Add (Succ m) n = Succ (Add m n)

22 November 2008 QCON 55

type instance Add (Succ m) n = Succ (Add m n)

Case study, Bluespec
• Primitive type of bit vectors

data Bit

append :: Bit m -> Bit n -> Bit (Add m n)
split :: Bit (Add m n) - > (Bit m, Bit n)

22 November 2008 QCON 56

split :: Bit (Add m n) - > (Bit m, Bit n)

toInt :: Bit n -> Integer
fromInt :: Integer -> Bit n

Case study, Bluespec
• Some instances

class Bits a where
type Size a
toBits :: a -> Bit (Size a)
fromBits :: Bit (Size a) - > a

22 November 2008 QCON 57

fromBits :: Bit (Size a) - > a

instance Bits Bool where
type Size Bool = One
toBits x = fromInt (if b then 1 else 0)
fromBits b = toInt b == 1

Case study, Bluespec
• Some instances, cont

instance (Bits a, Bits b) => Bits (a, b) where
type Size (a, b) = Add (Size a) (Size b)

22 November 2008 QCON 58

toBits (x, y) = append (toBits x) (toBits y)

fromBits b = (fromBits bx, fromBits by)
where (bx, by) = split b

Case study, Bluespec
• Conclusions

– Complicated concepts like numbers and addition
can be encoded at the type level.

22 November 2008 QCON 59

Conclusions
• DSELs are great.
• Strongly typed DSELs are even greater.
• Haskell types can encode very complex type

systems.

22 November 2008 QCON 60

Questions?

22 November 2008 QCON 61

