
19/11/09 1

Project Voldemort
Jay Kreps

The Plan

1. Motivation
2. Core Concepts
3. Implementation
4. In Practice
5. Results

Motivation

The Team

•  LinkedIn’s Search, Network, and
Analytics Team
•  Project Voldemort
•  Search Infrastructure: Zoie, Bobo, etc
•  LinkedIn’s Hadoop system
•  Recommendation Engine
•  Data intensive features

•  People you may know
•  Who’s viewed my profile
•  User history service

The Idea of the Relational Database

The Reality of a Modern Web Site

Why did this happen?

•  The internet centralizes computation
•  Specialized systems are efficient (10-100x)

•  Search: Inverted index
•  Offline: Hadoop, Terradata, Oracle DWH
•  Memcached
•  In memory systems (social graph)

•  Specialized system are scalable
•  New data and problems

•  Graphs, sequences, and text

Services and Scale Break Relational DBs

•  No joins
•  Lots of denormalization
•  ORM is less helpful
•  No constraints, triggers, etc
•  Caching => key/value model
•  Latency is key

Two Cheers For Relational Databases

•  The relational model is a triumph of computer
science:
•  General
•  Concise
•  Well understood

•  But then again:
•  SQL is a pain
•  Hard to build re-usable data structures
•  Don’t hide the memory hierarchy!

Good: Filesystem API
 Bad: SQL, some RPCs

Other Considerations

•  Who is responsible for performance (engineers?
DBA? site operations?)
•  Can you do capacity planning?
•  Can you simulate the problem early in the design
phase?
•  How do you do upgrades?
•  Can you mock your database?

Some motivating factors

•  This is a latency-oriented system
•  Data set is large and persistent

•  Cannot be all in memory
•  Performance considerations

•  Partition data
•  Delay writes
•  Eliminate network hops

•  80% of caching tiers are fixing problems that shouldn’t
exist
•  Need control over system availability and data durability

•  Must replicate data on multiple machines
•  Cost of scalability can’t be too high

•  Amazon’s Dynamo storage system
•  Works across data centers
•  Eventual consistency
•  Commodity hardware
•  Not too hard to build

  Memcached
–  Actually works
–  Really fast
–  Really simple

  Decisions:
–  Multiple reads/writes
–  Consistent hashing for data distribution
–  Key-Value model
–  Data versioning

Inspired By Amazon Dynamo & Memcached

Priorities

1.  Performance and scalability
2.  Actually works
3.  Community
4.  Data consistency
5.  Flexible & Extensible
6.  Everything else

Why Is This Hard?

•  Failures in a distributed system are much more
complicated
•  A can talk to B does not imply B can talk to A
•  A can talk to B does not imply C can talk to B

•  Getting a consistent view of the cluster is as hard as
getting a consistent view of the data

•  Nodes will fail and come back to life with stale data
•  I/O has high request latency variance
•  I/O on commodity disks is even worse
•  Intermittent failures are common
•  User must be isolated from these problems
•  There are fundamental trade-offs between availability and

consistency

Core Concepts

Core Concepts - I

 ACID
–  Great for single centralized server.

 CAP Theorem
–  Consistency (Strict), Availability , Partition Tolerance
–  Impossible to achieve all three at same time in distributed platform
–  Can choose 2 out of 3
–  Dynamo chooses High Availability and Partition Tolerance

  by sacrificing Strict Consistency to Eventual consistency

 Consistency Models
–  Strict consistency

  2 Phase Commits
  PAXOS : distributed algorithm to ensure quorum for consistency

–  Eventual consistency
  Different nodes can have different views of value
  In a steady state system will return last written value.
  BUT Can have much strong guarantees.

Proprietary & Confidential 19/11/09 16

Core Concept - II

 Consistent Hashing
 Key space is Partitioned

–  Many small partitions

 Partitions never change
–  Partitions ownership can change

 Replication
–  Each partition is stored by ‘N’ nodes

 Node Failures
–  Transient (short term)
–  Long term

  Needs faster bootstrapping

Proprietary & Confidential 19/11/09 17

Core Concept - III

•  N - The replication factor
•  R - The number of blocking reads
•  W - The number of blocking writes

•  If R+W > N
•  then we have a quorum-like algorithm
•  Guarantees that we will read latest writes OR fail

•  R, W, N can be tuned for different use cases
•  W = 1, Highly available writes
•  R = 1, Read intensive workloads
•  Knobs to tune performance, durability and availability

Proprietary & Confidential 19/11/09 18

Core Concepts - IV

•  Vector Clock [Lamport] provides way to order events in a
distributed system.

•  A vector clock is a tuple {t1 , t2 , ..., tn } of counters.
•  Each value update has a master node

•  When data is written with master node i, it increments ti.
•  All the replicas will receive the same version
•  Helps resolving consistency between writes on multiple replicas

•  If you get network partitions
•  You can have a case where two vector clocks are not comparable.
•  In this case Voldemort returns both values to clients for conflict resolution

Proprietary & Confidential 19/11/09 19

Implementation

Voldemort Design

Client API

•  Data is organized into “stores”, i.e. tables
•  Key-value only

•  But values can be arbitrarily rich or complex
•  Maps, lists, nested combinations …

•  Four operations
•  PUT (K, V)
•  GET (K)
•  MULTI-GET (Keys),
•  DELETE (K, Version)
•  No Range Scans

Versioning & Conflict Resolution

•  Eventual Consistency allows multiple versions of value
•  Need a way to understand which value is latest
•  Need a way to say values are not comparable

•  Solutions
•  Timestamp
•  Vector clocks

•  Provides global ordering.
•  No locking or blocking necessary

Serialization

•  Really important
•  Few Considerations
•  Schema free?
•  Backward/Forward compatible
•  Real life data structures
•  Bytes <=> objects <=> strings?
•  Size (No XML)

•  Many ways to do it -- we allow anything
•  Compressed JSON, Protocol Buffers,

Thrift, Voldemort custom serialization

Routing

•  Routing layer hides lot of complexity
•  Hashing schema
•  Replication (N, R , W)
•  Failures
•  Read-Repair (online repair mechanism)
•  Hinted Handoff (Long term recovery mechanism)

•  Easy to add domain specific strategies
•  E.g. only do synchronous operations on nodes in

the local data center
•  Client Side / Server Side / Hybrid

Voldemort Physical Deployment

Routing With Failures

•  Failure Detection
• Requirements

• Need to be very very fast
•  View of server state may be inconsistent

•  A can talk to B but C cannot
•  A can talk to C , B can talk to A but not to C

•  Currently done by routing layer (request timeouts)
•  Periodically retries failed nodes.
•  All requests must have hard SLAs

• Other possible solutions
•  Central server
•  Gossip protocol
•  Need to look more into this.

Repair Mechanism

 Read Repair
–  Online repair mechanism

  Routing client receives values from multiple node
  Notify a node if you see an old value
  Only works for keys which are read after failures

 Hinted Handoff
–  If a write fails write it to any random node
–  Just mark the write as a special write
–  Each node periodically tries to get rid of all special entries

 Bootstrapping mechanism (We don’t have it yet)
–  If a node was down for long time

  Hinted handoff can generate ton of traffic
  Need a better way to bootstrap and clear hinted handoff tables

Proprietary & Confidential 19/11/09 28

Network Layer

•  Network is the major bottleneck in many uses
•  Client performance turns out to be harder than server
(client must wait!)

•  Lots of issue with socket buffer size/socket pool
•  Server is also a Client
•  Two implementations

•  HTTP + servlet container
•  Simple socket protocol + custom server

•  HTTP server is great, but http client is 5-10X slower
•  Socket protocol is what we use in production
•  Recently added a non-blocking version of the server

Persistence

•  Single machine key-value storage is a commodity
•  Plugins are better than tying yourself to a single strategy

•  Different use cases
•  optimize reads
•  optimize writes
•  large vs small values

•  SSDs may completely change this layer
•  Better filesystems may completely change this layer

•  Couple of different options
•  BDB, MySQL and mmap’d file implementations
•  Berkeley DBs most popular
•  In memory plugin for testing

•  Btrees are still the best all-purpose structure
•  No flush on write is a huge, huge win

In Practice

LinkedIn problems we wanted to solve

•  Application Examples
•  People You May Know
•  Item-Item Recommendations
•  Member and Company Derived Data
•  User’s network statistics
•  Who Viewed My Profile?
•  Abuse detection
•  User’s History Service
•  Relevance data
•  Crawler detection
•  Many others have come up since

•  Some data is batch computed and served as read only
•  Some data is very high write load
•  Latency is key

Key-Value Design Example

 How to build a fast, scalable comment system?
 One approach

–  (post_id, page) => [comment_id_1, comment_id_2, …]
–  comment_id => comment_body

 GET comment_ids by post and page
 MULTIGET comment bodies
 Threaded, paginated comments left as an exercise 

Proprietary & Confidential 19/11/09 33

Hadoop and Voldemort sitting in a tree…

 Hadoop can generate a lot of data
 Bottleneck 1: Getting the data out of hadoop
 Bottleneck 2: Transfer to DB
 Bottleneck 3: Index building
 We had a critical process where this process took a DBA

a week to run!
  Index building is a batch operation

19/11/09 34

  Throughput vs. Latency
  Index building done in Hadoop
  Fully parallel transfer
  Very efficient on-disk structure
  Heavy reliance on OS pagecache
  Rollback!

Read-only storage engine

Voldemort At LinkedIn

•  4 Clusters, 4 teams
•  Wide variety of data sizes, clients, needs

•  My team:
•  12 machines
•  Nice servers
•  500M operations/day
•  ~4 billion events in 10 stores (one per event type)
•  Peak load > 10k operations / second

•  Other teams: news article data, email related data, UI
settings

Results

Some performance numbers

•  Production stats
•  Median: 0.1 ms
•  99.9 percentile GET: 3 ms

•  Single node max throughput (1 client node, 1 server
node):

•  19,384 reads/sec
•  16,559 writes/sec

•  These numbers are for mostly in-memory problems

Glaring Weaknesses

•  Not nearly enough documentation
•  No online cluster expansion (without reduced
guarantees)
•  Need more clients in other languages (Java,
Python, Ruby, and C++ currently)
•  Better tools for cluster-wide control and
monitoring

State of the Project

•  Active mailing list
•  4-5 regular committers outside LinkedIn
•  Lots of contributors
•  Equal contribution from in and out of LinkedIn
•  Project basics

•  IRC
•  Some documentation
•  Lots more to do

•  > 300 unit tests that run on every checkin (and pass)
•  Pretty clean code
•  Moved to GitHub (by popular demand)
•  Production usage at a half dozen companies
•  Not just a LinkedIn project anymore
•  But LinkedIn is really committed to it (and we are hiring to work on it)

Some new & upcoming things

•  New
•  Python, Ruby clients
•  Non-blocking socket server
•  Alpha round on online cluster expansion
•  Read-only store and Hadoop integration
•  Improved monitoring stats
•  Distributed testing infrastructure
•  Compression

•  Future
•  Publish/Subscribe model to track changes
•  Improved failure detection

Socket Server Scalability

Proprietary & Confidential 19/11/09 43

Testing and releases

Proprietary & Confidential 19/11/09 44

 Testing “in the cloud”
  Distributed systems have complex failure scenarios
  A storage system, above all, must be stable
  Automated testing allows rapid iteration while maintaining confidence in

systems’ correctness and stability

 EC2-based testing framework
  Tests are invoked programmatically
  Contributed by Kirk True
  Adaptable to other cloud hosting providers

 Regular releases for new features and bugs
 Trunk stays stable

Shameless promotion

•  Check it out: project-voldemort.com
•  We love getting patches.
•  We kind of love getting bug reports.
•  LinkedIn is hiring, so you can work on this full time.

•  Email me if interested
•  jkreps@linkedin.com

The End

