Linked [T}.

Project Voldemort
Jay Kreps

19/11/09



The Plan Linked 7).

1. Motivation
2.Core Concepts
3. Implementation
4.In Practice

5. Results



Motivation



The Team Linked [T}.

* LinkedIn’s Search, Network, and
Analytics Team
* Project Voldemort
Search Infrastructure: Zoie, Bobo, etc
* LinkedIn’'s Hadoop system
« Recommendation Engine
« Data intensive features
* People you may know
 Who's viewed my profile
* User history service




The Idea of the Relational Database Linked [T}].

Online Applications

Application
Servers

Application
Servers

Search

The Database

Ad hoc
analysis

Business Offline
Reporting Processing

Offline Applications



The Reality of a Modern Web

Site

Online Applications

P o

Frontend n Frontend n

Frontend ﬂ
rpc rpc
A

rpc rpc rpe rpc

A
Search
erv

Service Z

{
16}

Memcached
DBY

Replica
DB

4
i

X
DBY
ETL Replica

Service X ] Service Y B nice ]

Search
Index II

ETL

Data
Warehouse

Business Ad hoc Offline
Reporting analysis Processing

Offline Applications

Linked [T}.



Why did this happen? Linked [T}).

* The internet centralizes computation
» Specialized systems are efficient (10-100x)
« Search: Inverted index

« Offline: Hadoop, Terradata, Oracle DWH
« Memcached

* |In memory systems (social graph)
« Specialized system are scalable
 New data and problems

* Graphs, sequences, and text



Services and Scale Break Relational DBs Linked [T}].

* No joins

* Lots of denormalization

* ORM is less helpful

* No constraints, triggers, etc
« Caching => key/value model
 Latency is key



Two Cheers For Relational Databases Linked [T}].

* The relational model is a triumph of computer
science:
* General
* Concise
* Well understood
« But then again:
« SQL is a pain
« Hard to build re-usable data structures
* Don’t hide the memory hierarchy!
Good: Filesystem API
Bad: SQL, some RPCs



Other Considerations Linked [T}.

* Who is responsible for performance (engineers?
DBA? site operations?)

« Can you do capacity planning?

« Can you simulate the problem early in the design
phase?

* How do you do upgrades?

« Can you mock your database?



Some motivating factors Linked [T}].

e This is a latency-oriented system
e Data set is large and persistent

e Cannot be all in memory
e Performance considerations

e Partition data

e Delay writes

e Eliminate network hops

e 80% of caching tiers are fixing problems that shouldn’t
exist

* Need control over system availability and data durability
* Must replicate data on multiple machines
e Cost of scalability can’t be too high



Inspired By Amazon Dynamo & Memcached Linked ().

e Amazon’s Dynamo storage system
 Works across data centers
e Eventual consistency
e« Commodity hardware
e Not too hard to build
= Memcached
— Actually works
— Really fast
— Really simple
= Decisions:
— Multiple reads/writes
— Consistent hashing for data distribution
— Key-Value model
— Data versioning



Priorities Linked [T},

1. Performance and scalability
2. Actually works

3. Community

4. Data consistency

5. Flexible & Extensible

6. Everything else



Why Is This Hard? Linked ().

e Failures in a distributed system are much more
complicated

e A can talk to B does not imply B can talk to A
e Acan talk to B does not imply C can talk to B

e Getting a consistent view of the cluster is as hard as
getting a consistent view of the data

 Nodes will fail and come back to life with stale data
e |/O has high request latency variance

e |/O on commodity disks is even worse

e |ntermittent failures are common

e User must be isolated from these problems

e There are fundamental trade-offs between availability and
consistency



Core Concepts



Core Concepts - | Linked [T}].

= ACID

— Great for single centralized server.

= CAP Theorem

— Consistency (Strict), Availability , Partition Tolerance
— Impossible to achieve all three at same time in distributed platform
— Can choose 2 out of 3
— Dynamo chooses High Availability and Partition Tolerance
» by sacrificing Strict Consistency to Eventual consistency

= Consistency Models

— Strict consistency

= 2 Phase Commits

= PAXOS : distributed algorithm to ensure quorum for consistency
— Eventual consistency

= Different nodes can have different views of value
* |n a steady state system will return last written value.
= BUT Can have much strong guarantees.

Proprietary & Confidential 19/11/09 16



Core Concept - i

= Consistent Hashing

= Key space is Partitioned
— Many small partitions

= Partitions never change
— Partitions ownership can change

= Replication
— Each partition is stored by ‘N’ nodes

= Node Failures

— Transient (short term)
— Long term
= Needs faster bootstrapping

Proprietary & Confidential

19/11/09

Hash Ring

[A, C, B]

Linked [T}.

17



Core Concept - llI Linked [T}].

N - The replication factor
R - The number of blocking reads
W - The number of blocking writes

f R+W>N

e then we have a quorum-like algorithm
 Guarantees that we will read latest writes OR fail

R, W, N can be tuned for different use cases
« W =1, Highly available writes

R =1, Read intensive workloads

e Knobs to tune performance, durability and availability

Proprietary & Confidential 19/11/09



Core Concepts - IV Linked [T}].

 Vector Clock [Lamport] provides way to order events in a
distributed system.

« A vector clock is a tuple {t1 , 12, ..., tn } of counters.

« Each value update has a master node

 When data is written with master node i, it increments ti.
« All the replicas will receive the same version
* Helps resolving consistency between writes on multiple replicas

* |f you get network partitions
* You can have a case where two vector clocks are not comparable.
* In this case Voldemort returns both values to clients for conflict resolution

Proprietary & Confidential 19/11/09

19



Implementation



Voldemort Design Linked ().

Logical Architecture

Client API

Conflict Resolution

Serialization
Requests Responses J
I
Rout e rrepalr Network Client & Server
(HTTP/Sockets/NIO)
(Optional)
Faiover (Hinted handoff)

Storage Engine
v _ (BDB/MySQL/Memory)




Client API Linked [T}.

e Data is organized into “stores”, i.e. tables
o Key-value only
e But values can be arbitrarily rich or complex
 Maps, lists, nested combinations ...
e Four operations
e PUT (K, V)
e GET (K)
e MULTI-GET (Keys),
e DELETE (K, Version)
« No Range Scans



Versioning & Conflict Resolution Linked [T}.

e Eventual Consistency allows multiple versions of value
 Need a way to understand which value is latest
e Need a way to say values are not comparable

e Solutions
e Timestamp

e \ector clocks

 Provides global ordering.
* No locking or blocking necessary



Serialization Linked 1],

e Really important
e Few Considerations
e Schema free?
e Backward/Forward compatible
e Real life data structures
o Bytes <=> objects <=> strings?
e Size (No XML)
« Many ways to do it -- we allow anything

e Compressed JSON, Protocol Buffers,
Thrift, Voldemort custom serialization



Routing Linked ().

e Routing layer hides lot of complexity
e Hashing schema
e Replication (N, R, W)
e Failures
e Read-Repair (online repair mechanism)
 Hinted Handoff (Long term recovery mechanism)
e Easy to add domain specific strategies

 E.g. only do synchronous operations on nodes in
the local data center

o Client Side / Server Side / Hybrid



Voldemort Physical Deployment Linked ().

Physical Architecture Options

Frontend

Backend
- Backend
Service

Partition-aware Routing

f_T_T_m rf/_rr\f_] Additional routi{'

| |
Voldemort Cluster Voldemort Cluster

Best-effort Partition-aware Routing

N

Backend Service

Partition-aware Routing
-

3-Tier, Server-Routed 3-Tier, Client-Routed 2-Tier, Frontend-Routed



Routing With Failures Linked ().

e Failure Detection
*Requirements
*Need to be very very fast
e View of server state may be inconsistent
e A can talk to B but C cannot
e Acantalkto C, B cantalk to Abut notto C
e Currently done by routing layer (request timeouts)
e Periodically retries failed nodes.
e All requests must have hard SLAs
*Other possible solutions
e Central server
e Gossip protocol
e Need to look more into this.



Repair Mechanism

= Read Repair

— Online repair mechanism
= Routing client receives values from multiple node
= Notify a node if you see an old value
= Only works for keys which are read after failures

= Hinted Handoff

— If a write fails write it to any random node
— Just mark the write as a special write
— Each node periodically tries to get rid of all special entries

= Bootstrapping mechanism (We don’t have it yet)

— If a node was down for long time
» Hinted handoff can generate ton of traffic
= Need a better way to bootstrap and clear hinted handoff tables

Proprietary & Confidential 19/11/09

Linked [T}.

28



Network Layer Linked ().

e Network is the major bottleneck in many uses
e Client performance turns out to be harder than server
(client must wait!)

e Lots of issue with socket buffer size/socket pool
e Server is also a Client
e Two implementations

e HTTP + servlet container

e Simple socket protocol + custom server
e HTTP server is great, but http client is 5-10X slower
e Socket protocol is what we use in production
e Recently added a non-blocking version of the server



Persistence Linked [T}.

e Single machine key-value storage is a commodity
* Plugins are better than tying yourself to a single strategy
o Different use cases
e optimize reads
e optimize writes
e large vs small values
e« SSDs may completely change this layer
 Better filesystems may completely change this layer
e Couple of different options
e BDB, MySQL and mmap’d file implementations
e Berkeley DBs most popular
* In memory plugin for testing
e Btrees are still the best all-purpose structure
e No flush on write is a huge, huge win



In Practice



LinkedIn problems we wanted to solve

Application Examples

Some data is batch computed and served as read only

People You May Know

ltem-Item Recommendations
Member and Company Derived Data
User’s network statistics

Who Viewed My Profile?

Abuse detection

User’s History Service

Relevance data

Crawler detection

Many others have come up since

Some data is very high write load
Latency is key

Linked [T}.



Key-Value Design Example Linked [T}).

= How to build a fast, scalable comment system?

= One approach
— (post_id, page) => [comment_id_1, comment_id 2, ...]
— comment_id => comment_body

» GET comment_ids by post and page
* MULTIGET comment bodies
» Threaded, paginated comments left as an exercise ©

Proprietary & Confidential 19/11/09 33



Hadoop and Voldemort sitting in a tree... Linked T3],

» Hadoop can generate a lot of data

» Bottleneck 1: Getting the data out of hadoop
= Bottleneck 2: Transfer to DB

= Bottleneck 3: Index building

* WWe had a critical process where this process took a DBA
a week to run!

* |ndex building is a batch operation

19/11/09

34



Linked [T}].
20,000 Foot View Of The Data Cycle

Hadoop Cluster

Data Extraction Data Push

Voldemort
Cluster

% \Sew‘ ice/ w =

Logging
Service

Frontend



Read-only storage engine Linked [T1].

Throughput vs. Latency

Index building done in Hadoop
Fully parallel transfer

= Very efficient on-disk structure

» Heavy reliance on OS pagecache
= Rollback!

Read-Only Store Build and Swap Process

Build Store

AV'd

Hadoop

Trigger Store

Build Job
| Trigger Fetch Scheduler

/n Trigger Swap
| Voldemort Cluster I

Parallel Fetch




Voldemort At Linkedin Linked [T}.

e 4 Clusters, 4 teams
e Wide variety of data sizes, clients, needs
e My team:
e 12 machines
e Nice servers
e 500M operations/day
e ~4 billion events in 10 stores (one per event type)
e Peak load > 10k operations / second
e Other teams: news article data, email related data, Ul
settings



Results



Some performance numbers Linked [T}].

e Production stats
e Median: 0.1 ms
e 99.9 percentile GET: 3 ms
e Single node max throughput (1 client node, 1 server
node):
e 19,384 reads/sec
e 16,559 writes/sec
e These numbers are for mostly in-memory problems



Glaring Weaknesses Linked [T}

e Not nearly enough documentation

* No online cluster expansion (without reduced
guarantees)

 Need more clients in other languages (Java,
Python, Ruby, and C++ currently)

e Better tools for cluster-wide control and
monitoring



State of the Project Linked [T}

e Active mailing list
e 4-5 regular committers outside LinkedIn
e Lots of contributors
e Equal contribution from in and out of LinkedIn
e Project basics
e IRC
e Some documentation
 Lots more to do
e > 300 unit tests that run on every checkin (and pass)
* Pretty clean code
* Moved to GitHub (by popular demand)
e Production usage at a half dozen companies
e Not just a LinkedIn project anymore
e But LinkedIn is really committed to it (and we are hiring to work on it)



Some new & upcoming things Linked ().

 New
e Python, Ruby clients
e Non-blocking socket server
e Alpha round on online cluster expansion
e Read-only store and Hadoop integration
e Improved monitoring stats
e Distributed testing infrastructure
e Compression

e Future
e Publish/Subscribe model to track changes
e Improved failure detection



Socket Server Scalability Linked [T}).

BDB TPS

7000
6000
5000

4000

& NIO
3000 % BIO

2000

Transactions/second

1000

2000 6000 10000 14000 18000 22000 26000 30000 34000
40 4000 8000 12000 16000 20000 24000 28000 32000

Clients

Proprietary & Confidential 19/11/09 43



Testing and releases

= Testing “in the cloud”

» Distributed systems have complex failure scenarios

= A storage system, above all, must be stable

= Automated testing allows rapid iteration while maintaining confidence in
systems’ correctness and stability

» EC2-based testing framework
= Tests are invoked programmatically
= Contributed by Kirk True
= Adaptable to other cloud hosting providers

» Regular releases for new features and bugs
* Trunk stays stable

Proprietary & Confidential 19/11/09

Linked [T}.

44



Shameless promotion Linked [T}).

e Check it out: project-voldemort.com

* We love getting patches.

* We kind of love getting bug reports.

e LinkedIn is hiring, so you can work on this full time.

e Email me if interested
e ikreps@linkedin.com



The End Linked [T}.




