

Groovy On The Trading Desk:

Best Practices Developed From
Distributed Polyglot Programming

Jonathan Felch
jonathan.felch@gmail.com
JonathanFelch on Twiiter

mailto:jonathan.felch@gmail.com

Agenda
− Groovy Main Point

 Groovy Manifesto
 Major Language Features

− Computational Finance and Distributed Computing
 Finance Specific: Math / Data / Business / Languages
 Groovy Lessons: Use Cases

− Smart Grid and Dynamic Programming
 Data Grid: Moving Data Around
 Computational Grid: Moving Work and Code Around
 Operator Overloading and Dependency Graphs
 Groovy Lessons: Groovy Types, Dynamic Methods, GPars

− Functional Programming and The Problem of State
 Objects Versus “Smart Tuples”
 Closures, Operators, Currying and Chaining
 Groovy Lessons: Groovy Uses Or Groovy Is ?
 Groovy Type System: Friend or Foe?

Introduction

Jonathan Felch

− NASDAQ Software Architect 1997-99
− Lehman Brothers Global e-Commerce Architect 1999-2000
− Venture Capital Associate @ GS / BCG JV 2000-2001
− Quantitative Systems @ Syntax Capital 2005-2006
− VP Quantitative Prop Trading @ Credit Suisse 2006-2009
− Quant Trader @ E.H. Smith Jacobs High Frequency 2009+

jonathan.felch@gmail.com
JonathanFelch On Twitter and LinkedIn

mailto:jonathan.felch@gmail.com

Groovy Manifesto
 is an agile and dynamic language for the Java Virtual Machine
 builds upon the strengths of Java but has additional power features

inspired by languages like Python, Ruby and Smalltalk
 makes modern programming features available to Java developers

with almost-zero learning curve
 supports Domain-Specific Languages and other compact syntax so

your code becomes easy to read and maintain
 makes writing shell and build scripts easy with its powerful processing

primitives, OO abilities and an Ant DSL
 increases developer productivity by reducing scaffolding code when

developing web, GUI, database or console applications
 simplifies testing by supporting unit testing and mocking out-of-the-

box
 seamlessly integrates with all existing Java objects and libraries
 compiles straight to Java bytecode so you can use it anywhere you

can use Java

Groovy Use Cases

 Super Glue

 Half Baked Ideas

 Cookie Cutter Apps For Really Good Cookies

 Meta-Programming, Builders, And DSLs

Super Glue Example
Combine GUI Library (Swing), Network Library, and
XML Parser to make RSS Feed

def url ='http://www.groovyblogs.org/feed/rss'
def items = new XmlParser().parse(url).channel.item
def cols = 'pubDate title description'.tokenize()
groovy.swing.SwingBuilder.build {
 frame(id:'f', title: 'Groovy RSS', visible:true) {
 scrollPane {
 table {
 tableModel(list: items) {
 cols.each { col →
 closureColumn header: col,

read: { it[col].text() }
 } } } } }
 f.pack()
 }

Groovy Performance:
Numeric Collections

Operator Overloading Creates Implicit
Dependency Graph That Optimizes Evaluation

−
Only Re-calculate Values That Change

 Overloading operators in numeric collections allow numeric
operations to only-recalculate variations in the dependency
graph

 JIT / Optimizers will load partial expressions into CPU
registered

− Closures as formulas
 Rather than using loops for executing an expression many

times, the collections can be mixed with numeric values
and constants in a single expression

Groovy Performance: Numeric Grid

// Monte Carlo Simulation For European Put Option in 10 Lines Or Less

def px = 100, r = 0.05, vol = 0.15, t = 1.0
def strikes = [80, 90, 100, 110, 120]
def w = RandomNumbers.getNormDist(1000,1000)
def S = px * Math.E ** ((r - ½ * vol * vol) * t + sqrt(t) * vol * w)
strikes.each { K →
 def optionValue = Math.max(0, S – K)
 def df = exp(-rate * time)
 println “${strike} : ${df * optionValue as Number}”
}

// In Java or C You Would Have To Loop

Why Groovy ?
 Pith, Speedy Development Cycle

− Made for half baked ideas

 Learning Curve
− Familiar To Java Programmers, Java Syntax is (Mostly)

Groovy Syntax

 Dynamic Programming
− Meta-Programming, DSL Support

 Java / JEE / Enterprise
− Easy Stuff Is Actually Easy

 Community

What is Quant Finance ?

A quant designs and implements software and
mathematical models for the pricing of
derivatives, assessment of risk, or predicting
market movements

S t=S0 e
−1

2
2tt 

What's The Problem: The Math
 Quant Finance Models are Wrong

− Even The Best Models Fail, Failure Is Expensive

 Assumption of Quantitative Finance Are Wrong
− Market Are Social Phenomena
− Not Random Walks, Not Natural Systems

 Quant Finance Models Change
− In Bad Times, They Change A Lot

 Coding Almost everything in C++ takes forever

 Coding Everything Else in VBA doesn't scale

What's The Problem: The Market
 Market Structures Drive Financial Data

− Different Calendars, Different Measures
− Equities and Government Auctions are Transparent

 Also options, some bonds, some preferred

− Exotic and Credit Markets are Illiquid, No
Transparency

 Some of products are not really 'securities'

 Identifiers are ridiculous, don't work, unclear
− ISIN, CUSIP, SEDOL, Tickers, ADRs, …
− Lifecycle of a Bond's ISIN (144a, Reg S, Registered)

What's The Problem: The Data

 Lots of Data, Lots of Math, Lots of Products
− Credit Market Subset

 1500 Companies / 2500 Curves / 10 Indices & Tranches
 10,000 Liquid Bonds / 2,000 Liquid Converts / 2,000 Loans
 1500 Liquid Equities / 169 point vol surface to start

− Derivatives and Quant strategies have many metrics
for each time series observation

 Securities can't be compared on price
 Relative values metrics are complex and there are many

What's The Problem: The Traders
 Great Trades Come From Half-Baked Ideas

− Fully Baked Ideas Have Already Been Priced In

 Traders Do Not Know What They Want
− Good traders ride the cusp of intuition and logic

 Whatever They Think They Want, They Wanted
It Yesterday

 Whatever They Want Today, They Will Never
Use Again

− Downside of the half baked idea

The Evils Of Financial Databases I

WRONG WAY:
SELECT DATE, PRICE, (TS1.PRICE+
TS2.PRICE+TS3.PRICE) / 3 AS SMA_3

FROM TIMESERIES TS1,
 TIMESERIES TS2, TIMESERIES TS3

WHERE TS1.TICKER = TS2.TICKER |
 AND TS2.TICKER = TS3.TICKER AND
 TS2.DATE = (TS1.DATE-1) AND
 TS3.DATE = (TS2.DATE-1) AND
 TS1.TICKER = 'ABC'

Date Price SMA_3

3 102 101
4 103 102
5 104 103
6 105 104

Date Price Ticker

1 100 ABC

2 101 ABC

3 102 ABC

4 103 ABC

Languages of Quant Finance
 Commonly used languages of Quant Finance

− C++ (The Dominant Industrial Strength Language)
− VBA
− Matlab, SAS, STATA, S+, and R
− C#
− Java (Most limited to Fixed Income and Web)

 Up and Coming / Research Languages of
Interest to Quant Finance

− Fortress, Scala, Groovy, Python, F#, and Erlang

Where Should We Go
 Polyglot Coding:

− Use C++ or Java Where You Need To
− Extend That Foundations With Python, Groovy, Lua,

Ruby, Scala, or some other dynamic language with
support for closures, meta-programming, and high-
level operations

 Post-SQL Data Management
− Combine Column Oriented and Row Oriented

Database Features In Cache
− Use Cache and Workspace and Integration Space
− Allow “Objects” to Evolve Dynamically
− Naturally Order Data Is Ordered In Cache

Groovy Performance:
Bad News

Overhead if NumericGrid Had Been Written in
Groovy Rather than Groovy-Aware Java

− Type System:
 Groovy Really Likes Java Collections, But Not Array
 Groovy Really Likes BigDecimal, But Not Primatives
 Groovy Really Likes Duck Typing

− Method Invocation

− Gparallelizer (Now Gpars)
 DSL For the JSR 166y ParallelArray Would Have Invoked

Many Copies of Groovy Collections Into Primative Maps

Databases versus Caching
 Traditional Model: Hibernate

− Data Model = Database plus Cache of POJOs
 All Objects of the name class share structure
 No (Persistent) Dynamic Properties on 1st class objects
 All first class objects (query-able) lived in the database

 Our Model: All POJOs → TupleMaps or Nodes
− Tuples of same class may 'grow' existing structure
− Tuples do not all have to come from data

 Questions about what does and does not belong in
database

 Query Language = Gpath / Xpath + Hibernate
 Includes dynamic properties and calculated values

Distributed Cache and
MetaProgramming I

 Terracotta for the shared memory and
synchronization

− Integration point for Hibernate and Hibernate
Cache

− Integration point for Groovy Data Adapters

 All First Class Objects are decomposed from
Java or Groovy objects to a 'Tuple'

− Not perfectly named, but a simple data structure
than implements Map and List

− Usable with XPATH
− Small Set of Primitives optimized for Terracotta

Distributed Cache and
Meta-Programming II

 Everything is a Property
− Data and methods
− Behavior follows a mathematical model
− Property listeners manage invalidation

 Missing Methods / Missing Properties
− Widely used calculations and method results stored

as property values so avoid redundant calculation
− Calculated values are never stored in the database

Distributed Cache and
Meta Programming III

 Tuple Class
− Much like a Groovy Class
− Joins objects like associations / relations in

Hibernate
− Defines raw types / names / converters
− Defines property finders / chained finders /

methods

 Missing Methods / Missing Properties
− Widely used calculations and method results stored

as property values so avoid redundant calculation
− Calculated values are never stored in the database

Distributed Cache and
Meta Programming IV

 Do We Even Want A Database ??
− Sometimes Accessing Data Remotely Works Just

As Well
− Sometimes Pulling Data from Flat Files On

Demand works Just As Well
− Sometimes Calculating from Values from old inputs

makes more sense than persisting it (normal forms)

 'Active' Cache As a Integration Space
−

Distributed Cache and
Meta Programming IV

 Did TupleMap and Tuple Class Simply Re-
Create The Object ?

− Functional Closures != Methods
− State Is Never Shared
− Curried Closures Can Move Large Tasks to

Distributed Work Queues or Thread Pools

 Data + Computational Grid = Scheduling Fun
− Move Work Requests To Where Data Lives
− Send Curried Closures To Computational Engines

Grails As A Integration Hub
 Controller requests arrive via JSON, XML, JMS

− R Language Client: JSON → Grails
− Excel Client: JSON → Grails Over HTTP
− Excel RTD: JSON → Grails over JMS
− SwingX Table (Real-Time) JSON → Grails via JMS
− SwingX Table JSON → Grails via HTTP

 Affiliated Business Units:
− XML Web Services from dot Not
− Matlab dot Net

Cache Logic: Reporting
def r = builder.reportWith(Bond.class, ”bond.cdsBasis < 0”) {
 attr {
 expression = 'bond.ticker'
 name = 'Tkr'
 }
 attr {
 expression = 'bond.coupon'
 name = 'Tkr'
 }
 attr {
 expression = 'bond.maturity'
 name = 'Tkr'
 }
 attr {
 expression = 'bond.spot?.price?.last'
 name = 'Px'
 }
 attr {
 expression = 'bond.spot?.yield?.last'
 name = 'Px'
 }
 attr {
 expression = 'bond.spot?.zspread?.last'
 name = 'Px'
 }
 attr {
 expression = 'bond.spot?.cdsBasis?.last'
 name = 'Px'
 }
}

Grails to Excel I:
DASL(Ticker,Exp)

Ticker /
Expression

JAVA
Equity

ORCL
Equity

GM
Equity

IBM
Equity

it.spot.px 9.0 18.42 1.09 101.37

it.volSurface.find(delta : 50, expiry :
365).spot.iVol

22 44 180 39

it.cds.spot.spread 65.31 63 23730 60

it.refBond.spot.zspread 230 55 18700 57

it.cds.spot.basis -164.7 8 1030 3

it.fin.mrq.netDebt -300 10000 28846 21000

it.fin.mrq.totalDebt /
it.fin.mrq.ebitda

N/A 5.5 N/A 6.3

Grails to Excel II:
DSLH(Ticker,Exp,Start,End)

Ticker /
Expression

JAVA
Equity

ORCL
Equity

GM
Equity

IBM
Equity

it.spot.px 9.0 18.42 1.09 101.37
15 May 2009 9.0 18.42 1.09 101.37

14 May 2009 9.0 18.46 1.15 101.05
13 May 2009 8.95 18.07 1.21 102.26
12 May 2009 9.05 18.38 1.15 103.94
11 May 2009 8.91 18.56 1.44 99.83
8 May 2009 8.71 18.32 1.61 101.49

 Expressions can be complex, traverse related
objects, join disparate data sources

Grails to Excel III:
DSLR(Report[Optional Para])

=DSLR('SUNMA') EqyPx CDS Bond Basis Debt Leverage
JAVA Equity 9.0 63 230 -164.7 -300 N/A

ORCL Equity 18.42 63 55 8 10000 5.5

IBM Equity 101.37 60 57 3 21000 6.3

Dasel:
A DSL for Financial Data

 Injectable Closures Into Tuples for “Column”
Definitions

 Simple Reporting / Excel Grammar

 GRAILS Rendered Everything Into Web Pages
or JSON / XML Services

 Component Library For Quantitative Analysis

 Massively Scalable Time Series Data Cache

The Revolution I
Technology And Finance

PDP-11 IBM
PC SPARC EMAIL WEB XML GRID

 The Network Is The Computer
− We Can't Agree On Which End Of The Byte

Comes First (Big Endian / Little Endian)
− We Can't Agree On Character Set and Line

Delimiters (EBCIDEC, ASCII, Unicode)
− We Can't Agree How to Share Files
− We Can't Agree How To Share Code

Groovy Gotchas
 Pimping my library → Not Always Helping

− GPars: Copies are expensive, the syntax is great

 Language Gotchas

 Dynamic Method Invocation
− More Expensive than it should be

 'Groovy' Can Be Expensive: Abusing Each
− Anonymous Closures Versus loops (list.each {})

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

