
LinkedIn: Network Updates Uncovered

Ruslan Belkin
Sean Dawson

Agenda

•  Quick Tour
•  Requirements (User Experience / Infrastructure)
•  Service API
•  Internal Architecture
•  Applications (e.g., Twitter Integration, Email Delivery)
•  Measuring Performance

•  Shameless self promotion

Environment 90% Java
5% Groovy
2% Scala
2% Ruby
1% C++

Containers Tomcat, Jetty

Data Layer Oracle, MySQL, Voldemort,
Lucene, Memcache

Offline Processing Hadoop

Queuing ActiveMQ

Frameworks Spring

The Stack

The Numbers

Updates Created 35M / week

Update Emails 14M / week

Service Calls 20M / day
230 / second

Stream View

Connection View

Profile

Groups

Mobile

NUS Email digest screenshot

Email

HP without NUS

Expectations – User Experience

•  Multiple presentation views
•  Comments on updates
•  Aggregation of noisy updates
•  Partner Integration
•  Easy to add new updates to the system
•  Handles I18N and other dynamic contexts
•  Long data retention

Expectations - Infrastructure

•  Large number of connections, followers and groups
•  High request volume + Low Latency
•  Random distribution lists
•  Black/White lists, A/B testing, etc.
•  Tenured storage of update history
•  Tracking of click through rates, impressions
•  Supports real-time, aggregated data/statistics
•  Cost-effective to operate

Historical Note

•  Legacy “network update”
feature was a mixed bag of
detached services.

•  Neither consistent nor scalable
•  Tightly coupled to our Inbox
•  Migration plan

•  Introduce API, unify all
disparate service calls

•  Add event-driven activity
tracking with DB backend

•  Build out the product
•  Optimize!

(homepage circa 2007)

Network Updates Service – Overview

Service API – Data Model

<updates>	
 <NCON>	
 <connection>	
 <id>2</id>	
 <firstName>Chris</firstName>	
 <lastName>Yee</lastName>	
 </connection>	
 </NCON>	
</updates>	

Service API – Post

NetworkUpdatesNotificationService service =	
 getNetworkUpdatesNotificationService();	

ProfileUpdateInfo profileUpdate = createProfileUpdate();	

Set<NetworkUpdateDestination> destinations = 	
 Sets.newHashSet(
 NetworkUpdateDestinations.newMemberFeedDestination(1213)	
);	

NetworkUpdateSource source = 	
 new NetworkUpdateMemberSource(1214);	

Date updateDate = getClock().currentDate();	

service.submitNetworkUpdate(source, 	
 destinations,	
 updateDate, 	
 profileUpdate);	

Service API – Retrieve

NetworkUpdatesService service = getNetworkUpdatesService();	

NetworkUpdateChannel channel =	
 NetworkUpdateChannels.newMemberChannel(1213);	

UpdateQueryCriteria query = 	
 createDefaultQuery().	
 setRequestedTypes(NetworkUpdateType.PROFILE_UPDATE).	
 setMaxNumberOfUpdates(5).	
 setCutoffDate(ClockUtils.add(currentDate, -7));	

NetworkUpdateContext context =	
 NetworkUpdateContextImpl.createWebappContext();	

NetworkUpdatesSummaryResult result =	
 service.getNetworkUpdatesSummary(channel, 	
 query, 	
 context);	

System at a glance

Data Collection – Challenges

•  How do we efficiently support collection in a dense social
network

•  Requirement to retrieve the feed fast
•  But – there a lot of events from a lot of members and

sources
•  And – there are multiplier effects

Option 1: Push Architecture (Inbox)

•  Each member has an inbox of notifications received from
their connections/followees

•  N writes per update (where N may be very large)
•  Very fast to read
•  Difficult to scale, but useful for private or targeted

notifications to individual users

Option 1: Push Architecture (Inbox)

Option 2: Pull Architecture

•  Each member has an “Activity Space” that contains their
actions on LinkedIn

•  1 write per update (no broadcast)
•  Requires up to N reads to collect N streams
•  Can we optimize to minimize the number of reads?
-  Not all N members have updates to satisfy the query
-  Not all updates can/need to be displayed on the screen
-  Some members are more important than others
-  Some updates are more important than others
-  Recent updates generally are more important than older ones

Pull Architecture – Writing Updates

Pull Architecture – Reading Updates

Storage Model

•  L1: Temporal
•  Oracle
•  Combined CLOB / varchar storage
•  Optimistic locking
•  1 read to update, 1 write (merge) to update
•  Size bound by # number of updates and retention policy

•  L2: Tenured
•  Accessed less frequently
•  Simple key-value storage is sufficient (each update has a unique ID)
•  Oracle/Voldemort

Member Filtering

•  Need to avoid fetching N feeds (too expensive)
•  Filter contains an in-memory summary of user activity

•  Needs to be concise but representative
•  Partitioned by member across a number of machines

•  Filter only returns false-positives, never false-negatives
•  Easy to measure heuristic; for the N members that I

selected, how many of those members actually had good
content

•  Tradeoff between size of summary and filtering power

Member Filtering

Commenting

•  Users can create discussions around updates
•  Discussion lives in our forum service
•  Denormalize a discussion summary onto the tenured

update, resolve first/last comments on retrieval
•  Full discussion can be retrieved dynamically

Twitter Sync

•  Partnership with Twitter
•  Bi-directional flow of status

updates
•  Export status updates,

import tweets
•  Users register their twitter

account
•  Authorize via OAuth

Twitter Sync – Overview

Email Delivery

•  Multiple concurrent email generating tasks
•  Each task has non-overlapping ID range generators to avoid

overlap and allow parallelization
•  Controlled by task scheduler

•  Sets delivery time
•  Controls task execution status, suspend/resume, etc

•  Caches common content so it is not re-requested
•  Tasks deliver content to Notifier, which packages the

content into an email via JSP engine
•  Email is then delivered to SMTP relays

Email Delivery

Email Delivery

What else?

Brute force methods for scaling:
•  Shard databases
•  Memcache everything
•  Parallelize everything
•  User-initiated write operations are asynchronous when

possible

Know your numbers

•  Bottlenecks are often not where you think they are
•  Profile often
•  Measure actual performance regularly
•  Monitor your systems
•  Pay attention to response time vs transaction rate
•  Expect failures

Measuring Performance

Another way of measuring performance

LinkedIn is a great place to work

Questions?

Ruslan Belkin (http://www.linkedin.com/in/rbelkin)
Sean Dawson (http://www.linkedin.com/in/seandawson)

