

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Connected Clouds: Middleware
Infrastructure
Brian Oliver
Global Solutions Architect | brian.oliver@oracle.com

Oracle Coherence | Oracle Fusion Middleware Product Management

Not about rainbows…

Not about “cloudy” things

Agenda

•  Not about…
–  Amazon EC2, EBS, S3, VIP (or other cloud vendor)
–  Licensing and Pricing Models
–  Auto-Scaling
–  Fault Tolerance
–  High Availability
–  “On demand” / “Map Reduce” …

Agenda

•  How to make a globally distributed application appear
and operate as a single application.

•  Case Study: Globally Distributed Auction

<Insert Picture Here>

Agenda

•  Why one site isn’t enough…
•  Introduction to Oracle Coherence
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

Why one site isn’t enough…

•  Two reasons for multi-site deployments
–  Business Continuity / Disaster Recovery
–  Regional Scalability
–  “probably need 2x more than you think”

•  You don’t need to be a multi-national corporation
–  Simple Web-based Application with global adoption
–  Simple iPhone Application with global adoption

•  Use Coherence for Shared Memory
–  Local high-availability and scalability
–  Interconnect for global availability and scalability

<Insert Picture Here>

Agenda

•  Why one site isn’t enough…
•  Introduction to Oracle Coherence
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

Introduction to Oracle Coherence

•  Software Development Library
–  Provides a Data Grid for Application Developers
•  Clustering Technology
•  Distributed Data Structures and Compute Services

–  Pure Java 1.4.2+ (servers & clients)
–  Pure .Net 1.1, 2.x, 3.x (client)
–  Pure C++ (client)
–  No Third-Party or Open Source Dependencies

•  Other Libraries Support…
–  Database and File System Integration
–  Top Link, Hibernate, Http Session Management…

Introduction to Oracle Coherence

•  Peer-to-Peer Clustering and
 Data Management Technology

•  No Single Points of Failure

•  No Single Points of Bottleneck

•  No Masters / Slaves / Registries etc

•  All members have responsibility for;

•  Managing Cluster Health & Data

•  Perform Processing and Queries

•  Self healing

•  Communication is point-to-point
 (not TCP/IP) and/or one-to-many
•  Scale to limit of the back-plane

•  Use with commodity infrastructure

•  Linearly Scalable By Design

Introduction to Oracle Coherence

•  Data is automatically partitioned and
 load-balanced across the Server Cluster

•  Data is synchronously replicated for
 continuous availability

•  Servers monitor the health of each other
•  When in doubt, servers work together to

diagnose status

•  Healthy servers assume responsibility for
failed server (in parallel)

•  Continuous Operation: No interruption to
service or data loss due to a server failure

Introduction to Oracle Coherence

•  Dynamically scale-out during operation

•  Data automatically load-balanced to
 new servers in the cluster

•  No repartitioning required

•  No reconfiguration required

•  No interruption to service during
 scale-out

•  Scale capacity and processing on-the-fly

Coherence is Middleware

Coherence, Virtualization and Cloud

•  Coherence is designed…
–  For single data-center
–  To take advantage of physical infrastructure

•  Virtualized Infrastructure can suffer packet loss
•  1Gb network = 110MB/sec throughput
•  Virtualized 1Gb network = 5MB/sec throughput!
–  Worst seen. Usually < 50% physical

•  Can Coherence be used virtually or in a cloud?
–  Yes
–  Remember: Clouds provide capacity, scalability and better

utilization… not necessarily performance

Coherence in the Cloud

Infrastructure
Provider

Audience Model

Public (out-sourced) Public Virtualized
Physical

Private Virtualized
Physical

Private (in-sourced) Public Virtualized
Physical

Private Virtualized
Physical

… use physical for production and/or multi-virtual core …

<Insert Picture Here>

Agenda

•  Why one site isn’t enough…
•  Introduction to Oracle Coherence
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

Challenge #1: User Expectations

•  Most users (and some developers) assume;
–  “It doesn’t matter where I am in the world, everything should

perform the same way”

•  ie: Local and Distributed Applications should perform the
same

–  All networks perform at the same perceived speed

–  The network is not shared

•  ie: All of the available bandwidth is theirs

Challenge #1: The Reality

•  Applications aren’t deployed everywhere
–  We’d like them to be

•  All networks behave differently

•  Network is usually shared by many

•  The speed of light is actually incredibly SLOW!
–  Very noticeable over long distances

–  Networks are slower than the speed of light

Challenge #1: Distance Matters
Typical Network Latencies

Challenge #1: Distance Matters
Typical Network Latencies

Challenge #1: Distance Matters
Typical Network Latencies

Challenge #1: Distance Matters
Typical Network Latencies

Challenge #1: Distance Matters
Typical Network Latencies

Challenge #1: The Reality

•  Communicating between UK and AU servers is 3
orders of magnitude (1000x) slower than locally
–  Ie: Do 1000x more work locally than between UK and AU

–  All users will notice this delay

•  But… Bandwidth is usually very high
–  Unfortunately latency is as well.

Challenge #1: The Lessons

•  Architectures that work “locally” between servers
rarely work without change between “globally”
distributed servers
–  Global Architectures must be structured differently (from local

architectures) to meet user expectations

•  Achieving good performance in a globally distributed
system means “keeping and operating on data
locally”
–  Avoiding long-trips to data/operations

–  Means introducing “copies” = challenge of “consistency”

Challenge #1: The Lessons

•  It’s easy to give users the “illusion” of good
performance
–  Perform operations asynchronously

–  This will change the application model for the user

•  The greater the physical distance between servers,
the more “illusion” is required
–  Asynchronous APIs are very different from Synchronous APIs

•  Take advantage of available bandwidth!
–  Batch work for Asynchronous Processing

Challenge #2: Where to locate data/services?

•  Deciding on “where” isn’t easy

•  Different Strategies:
–  Site-based, Geography-based, Team/User-based, Domain-

based, Legality-based

–  Can be Static or Dynamic
eg: follow the sun or load-based

Challenge #2: The Reality

•  Global Architectures typically require many strategies
–  Case Study uses two strategies

•  Some data/services need to be everywhere
–  “reference data” needs to be everywhere

•  Achieving “efficiency” may require changing the
business model

Challenge #3: Who owns the Data/Services?

•  Single ownership is the ideal (“single master”)
–  Easy to understand

–  Easy to identify and control

•  BUT:
–  May scale very poorly

–  Introduces “hot-spots”, “points of failure” and latency

•  AND:
–  Is ownership static or dynamic?

Challenge #3: How is Data updated?

•  Pessimistic Strategy:
–  “Global Locking Transactions”

–  Incredibly slow due to multiple round trips

–  Rarely viable over long distances or with multiple sites

–  Delivers “Guaranteed Consistency”

•  Optimistic Strategy:
–  “Perform Updates Locally, Replicate and Resolve Conflicts”

–  Latency is close to theoretically possibilities (Real time)

–  Relies on “Eventual Consistency”

–  May be impossible to resolve conflicts

<Insert Picture Here>

Agenda

•  What is a DataGrid?
•  Why one site isn’t enough…
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

The Push Replication Pattern
The Rationale

… provides and extensible, flexible, high-
performance, highly-available and scalable
solution to support the in-order optimistic replication
of data and operations occurring in one Coherence
Data Grids to one or more possibly globally
distributed other Coherence Data Grids.

The Push Replication Pattern

•  The Push Replication Pattern advocates that
–  Operations (such as insert, update and delete) occurring on

Data in one Location should be pushed using one or more
Publishers to an associated Device.

–  A Publisher is responsible for optimistically replicating
Operations (in the order in which the said Operations
originally occurred) on or with the associated Device.

–  If a Device is unavailable for some reason, the Operations to
be replicated using the associated Publisher will be queued
and executed (in the original order) at a later point in time.

The Push Replication Pattern
The Coherence Incubator

http://coherence.oracle.com/display/INCUBATOR/

The Coherence Incubator hosts a repository of projects
providing example implementations for commonly used
design patterns, system integration solutions, distributed
computing concepts and other artifacts designed to enable
rapid delivery of solutions to potentially complex business
challenges built using or based on Oracle Coherence.

<Insert Picture Here>

Agenda

•  What is a DataGrid?
•  Why one site isn’t enough…
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

Deployment Models
“Master/Slave”
aka "Hot and Warm" aka "Active and Standby”

Updates to data made in the active grid are are sent
to the passive grid asynchronously and ordered

Deployment Models
“Hub and Spoke”
aka ”Master/Slaves”

Updates to data made in the active grid are are sent
to any number of passive grids asynchronously
and ordered

Deployment Models
“Hot Hot”
aka ”Federated”

Updates to data made in either of the active grids
are are sent to other active grid asynchronously
and ordered. (Conflicts are resolved on arrival)

Deployment Models
“Federated”
aka ”Multi-Master”

Updates to data made in any active grid are are
sent all other active grids asynchronously and
ordered. (Conflicts are resolved on arrival)

<Insert Picture Here>

Agenda

•  What is a DataGrid?
•  Why one site isn’t enough…
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

Real-World Usecase
Real-Time Auction

•  Real-Time Auction- Real-time online auction
between New York and London.

•  Fairness – Customers (Bidders) in either location see
recent “global” bids, and if they make the highest bid it
will be honored.

•  Scalability - Application must support increase in
demand, usage, catalogue, etc.

Real-World Usecase
The Players

•  Auctioneer
–  Runs as a single instance at a single site (e.g. London)
–  Seeds the auction with items that are to be bid against
–  Establishes the starting price
–  Controls the auction duration
–  Signals bidders that the auction has started in both London

and New York
–  Signals that the auction has stopped. The auctioneer then

terminates.

Real-World Usecase
The Players

•  Bidders
–  Runs as multiple instances in New York and London
–  Waits for an auction to start
–  Picks an item up for bid, gets the current bid, increases the

bid and submits it to the auction on behalf of a customer
–  Bidders compete with each other within a site
•  Replication between sites means they compete against

each other globally
–  All bids are processed.
–  Bidder stops bidding when the auctioneer signals that the

auction is closed.

Real-World Usecase
What is Going On?

•  Two separate Coherence clusters are running in New
York and London operating against two caches (i.e.
the bidding-cache and the control-cache)

•  The clusters are using Coherence Incubator Push
Replication to push bidding activity to New York from
London and vice versa (active-active replication).

•  It is also using Push Replication to push a single
control object to both clusters (active-passive
replication).

•  Concurrent bidding is happening both within a cluster
and between clusters.

Real-World Usecase
What is Going On?

London New York

Bidders Bidders

Auctioneer

bidding-items
Cache

control Cache

Real-World Usecase
What is Going On?

•  Within a cluster, standard Coherence Entry
Processors are used to reconcile concurrent bids
between competing bidders in the same cluster.

•  When bids are replicated to either New York or
London, a registered Conflict Resolver object
reconciles bids across the pond.

•  Logic in both the Conflict Resolver and the Entry
Processor is the same: is the bidding price higher
than the existing price in the cache? If it is,then it
becomes the current high bid in the cache. If it isn’t,
the bid is dropped.

<Insert Picture Here>

Agenda

•  What is a DataGrid?
•  Why one site isn’t enough…
•  Multi-Site Challenges
•  The Push Replication Pattern
•  Deployment Models
•  Real-World Use Case
•  Demonstration

Globally Distributed Auction Demonstration

•  Multiple 4 x virtual core servers (high CPU)
•  Amazon European Cloud (west)
•  Amazon United States Cloud (east)
•  Fedora 32-bit base build
•  Standard Java JDK 6
•  Coherence 3.5.1
•  Coherence Incubator Auction Example
•  SWT-based GUIs

Other uses

•  Global Session Management
–  Using Coherence and Push Replication to permit highly

available multi-continent seamless availability

•  Coherence Global System of Record
–  Trades / Shopping Carts
–  Integrating Multi Domain Systems

•  Messaging
–  Replacing traditional message-based systems
–  Systems become “state based” not message-based.

•  “If you can cache it, Coherence can distribute it”

search.oracle.com

or
oracle.com/products/middleware/coherence

For More Information

Coherence

The preceding is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

