
AMAZON S3: ARCHITECTING FOR

RESILIENCY IN THE FACE OFRESILIENCY IN THE FACE OF

FAILURES

Jason McHugh

CAN YOUR SERVICE SURVIVE?

CAN YOUR SERVICE SURVIVE?

CAN YOUR SERVICE SURVIVE?

• Datacenter loss of connectivity

• Flood

• Tornado

• Complete destruction of a datacenter

containing thousands of machinescontaining thousands of machines

KEY TAKEAWAYS

• Dealing with large scale failures takes a
qualitatively different approach

• Set of design principles here will help
• AWS, like any mature software organization, has

learned a lot of lessons about being resilient in learned a lot of lessons about being resilient in
the face of failures

OUTLINE

• AWS

• Amazon Simple Storage Service (S3)

• Scoping the failure scenarios

• Why failures happen

• Failure detection and propagation

• Architectural decisions to mitigate the impact of

failures

• Examples of failures

ONE SLIDE INTRODUCTION TO AWS

• Amazon Elastic Compute Cloud (EC2)

• Amazon Elastic block storage service (EBS)

• Amazon Virtual Private Cloud (VPC)

• Amazon Simple storage service (S3)

• Amazon Simple queue service (SQS)

• Amazon SimpleDB

• Amazon Cloudfront CDN

• Amazon Elastic Map-Reduce (EMR)

• Amazon Relational Database Service (RDS)

AMAZON S3

• Simple storage service

• Launched: March 14, 2006 at 1:59am

• Simple key/value storage system

• Core tenets: simple, durable, available, easily

addressable, eventually consistentaddressable, eventually consistent

• Large scale import/export available

• Financial guarantee of availability

– Amazon S3 has to be above 99.9% available

AMAZON S3 MOMENTUM

52 Billion

Q3 2009: 82 billion

Peak RPS: 100,000+

200 Million
5 Billion

18 Billion

Total Number of Objects Stored in Amazon S3

FAILURES

• There are some things that pretty much everyone

knows

– Expect drives to fail

– Expect network connection to fail (independent of the

redundancy in networking)

Datacenter #1Datacenter #3 Datacenter #2Datacenter #1

redundancy in networking)

– Expect a single machine to go out

Central
CoordinatorWorkers Workers

FAILURE SCENARIOS

• Corruption of stored and transmitted data

• Losing one machine in fleet

• Losing an entire datacenter

• Losing an entire datacenter and one machine in

another datacenteranother datacenter

WHY FAILURES HAPPEN

• Human error

• Acts of nature

• Entropy

• Beyond scale

FAILURE CAUSE: HUMAN ERROR

• Network configuration

– Pulled cords

– Forgetting to expose load balancers to external traffic

• DNS black holes

• Software bug• Software bug

• Failure to use caution

while pushing a rack

of servers

FAILURE CAUSE: ACTS OF NATURE

• Flooding

– Standard kind

– Non-standard kind: Flooding from the roof down

• Heat waves

– New failure mode: dude that drives the diesel truck– New failure mode: dude that drives the diesel truck

• Lightning

– It happens

– Can be disruptive

FAILURE CAUSE: ENTROPY

• Drive failures

– During an average day many

drives will fail in Amazon S3

• Rack switch makes half the hosts in rack unreachable• Rack switch makes half the hosts in rack unreachable

– Which half? Depends on the requesting IP.

• Chillers fail forcing the shutdown of some hosts

– Which hosts? Essentially random from the service owner’s

perspective.

FAILURE CAUSE: BEYOND SCALE

• Some dimensions of scale are easy to manage

– Amount of free space in system

– “Precise” measurements of when you could run out

– No ambiguity

– Acquisition of components by multiple suppliers– Acquisition of components by multiple suppliers

• Some dimensions of scale are more difficult

– Request rate

– Ultimate manifestation: DDOS attack

RECOGNIZING WHEN FAILURE HAPPENS

• Timely failure detection

• Propagation of failure must handle or avoid

– Scaling bottlenecks of their own

– Centralized failure of failure detection units

– Asymmetric routes– Asymmetric routes

Service 2Service 1 Service 3

X
#1 is healthy #1 is healthy #1 is healthyRequest to #1

GOSSIP APPROACH FOR FAILURE DETECTION

• Gossip, or epidemic protocols, are useful tools when

probabilistic consistency can be used

• Basic idea

– Applications, components, or failure units, heartbeat their

existenceexistence

– Machines wake up every time quantum to perform a

“round” of gossip

– Every round machines contact another machine randomly,

exchange all “gossip state”

• Robustness of propagation is both a positive and

negative

S3’S GOSSIP APPROACH – THE REALITY

• No, it really isn’t this simple at scale

– Can’t exchange all “gossip state”

• Different types of data change at different rates

• Rate of change might require specialized

compression techniquescompression techniques

– Network overlay must be taken into consideration

– Doesn’t handle the bootstrap case

– Doesn’t address the issue of application lifecycle

• This alone is not simple

• Not all state transitions in lifecycle should be

performed automatically. For some human

intervention may be required.

DESIGN PRINCIPLES

• Prior just sets the stage

• 7 design principles

DESIGN PRINCIPLES – TOLERATE FAILURES

• Service relationships

Service 1 Service 2
Calls/Depends on

Upstream from #2 Downstream from #1

• Decoupling functionality into multiple services

has standard set of advantages

– Scale the two independently

– Rate of change (verification, deployment, etc)

– Ownership

– encapsulation and exposure of proper primitives

Upstream from #2 Downstream from #1

DESIGN PRINCIPLES – TOLERATE FAILURES

• Protect yourself from upstream service

dependencies when they haze you

• Protect yourself from downstream service

dependencies when they fail

DESIGN PRINCIPLES – CODE FOR LARGE FAILURES

• Some systems you suppress entirely

• Example: replication of entities (data)

– When a drive fails replication components work quickly

– When a datacenter fails then replication components do

minimal work without operator confirmationminimal work without operator confirmation

Datacenter #1

Storage

… …

Datacenter #2

Storage

… …

To Datacenter #3

DESIGN PRINCIPLES – CODE FOR LARGE FAILURES

• Some systems must choose different behaviors based

on the unit of failure

… …

Datacenter #1

Storage

Datacenter #3

Storage

…

Datacenter #2

Storage

Datacenter #4

Storage

…

Object

DESIGN PRINCIPLE – DATA & MESSAGE

CORRUPTION

• At scale it is a certainty

• Application must do end-to-end checksums

– Can’t trust TCP checksums

– Can’t trust drive checksum mechanisms

• End-to-end includes the customer• End-to-end includes the customer

DESIGN PRINCIPLE – CODE FOR ELASTICITY

• The dimensions of elasticity

– Need infinite elasticity for cloud storage

– Quick elasticity for recovery from large-scale failures

• Introducing new capacity to a fleet

– Ideally you can introduce more resources in the system – Ideally you can introduce more resources in the system

and capabilities increase

– All load balancing systems (hardware and software)

• Must become aware of new resources

• Must not haze

• How not to do it

DESIGN PRINCIPLE – MONITOR, EXTRAPOLATE,

AND REACT

• Modeling

• Alarming

• Reacting

• Feedback loops

• Keeping ahead of failures

DESIGN PRINCIPLE – CODE FOR FREQUENT

SINGLE MACHINE FAILURES

• Most common failure manifestation – a single box

– Also sometimes exhibited as a larger-scale uncorrelated

failure

• For persistent data consider use Quorum

– Specialization of redundancy– Specialization of redundancy

– If you are maintaining n copies of data

• Write to w copies and ensure all n are eventually

consistent

• Read from r copies of data and reconcile

DESIGN PRINCIPLE – CODE FOR FREQUENT

SINGLE MACHINE FAILURES

• For persistent data use Quorum

– Advantage: does not require all operations to succeed on all

copies

• Hides underlying failures

• Hides poor latency from users• Hides poor latency from users

– Disadvantages

• Increases aggregate load on system for some operations

• More complex algorithms

• Anti-entropy is difficult at scale

DESIGN PRINCIPLE – CODE FOR FREQUENT

SINGLE MACHINE FAILURES

• For persistent data use Quorum

– Optimal quorum set size

• System strives to maintain the optimal size even

in the face of failures

– All operations have a “set size”– All operations have a “set size”

• If available copies are less than the operation set

size then the operation is not available

• Example operations: read and write

– Operation set sizes can vary depending on the

execution of the operations (driven by user’s access

patterns)

DESIGN PRINCIPLE – GAME DAYS

• Network eng and data center technicians turn off a

data center

– Don’t tell service owners

– Accept the risk, it is going to happen anyway

– Build up to it to start– Build up to it to start

– Randomly, once a quarter minimum

– Standard post-mortems and analysis

• Simple idea – test your failure handling – however it

may be difficult to introduce

REAL FAILURE EXAMPLES

• Large outage last year

• Traced down to a single network interface card

• Once found the problem was easily reproduced

• Corruption leaked past TCP checksuming on the

single communication channel that did not have single communication channel that did not have

application level checksuming

REAL FAILURE EXAMPLES

• Network access to Datacenter is lost

• Happens not infrequently

– Several noteworthy events in the last year

– Due to transit providers, networking upgrades, etc.– Due to transit providers, networking upgrades, etc.

– None noticed by customers

– Easily direct customers away from a datacenter

• It helps that we run game-days and irregular

maintenance by failing entire datacenters

REAL FAILURE EXAMPLES

• Network route asymmetry

– Learning about machine health via gossip

– Route taken to learn about health might not be the same

taken by communication between two machines

– Results in split brain – Results in split brain

• I think that machine is unhealthy

• Everyone else says it is fine, keep trying

REAL FAILURE EXAMPLES

• Rack switch makes all or some of hosts unreachable

• Must handle losing hundreds of disks simultaneously

– Independent of fixing the rack switch and the timeline

some action needs to be taken

– Intersection of a hundreds of sets of objects (say each set – Intersection of a hundreds of sets of objects (say each set

is 10 million objects) efficiently taking into account state of

the world for other failed components

DESIGN PRINCIPLES RECAP

• Expect and tolerate failures

• Code for large scale failures

• Expect and handle data and message corruption

• Code for elasticity

• Monitor, extrapolate and react

• Code for frequent single machine failures

• Game days

WHAT I HAVEN’T DISCUSSED

• Unit of failures

• Coalescing reporting of failures intelligently

• How to handle a failure

• Recording and trending of failure types

• Tracking and resolving failures

• In general all issues related to maintaining a good

ratio of support burden to fleet size

CONCLUSION

• Just scratching the surface

• Set of design principles which can help your system

be resilient in the face of failures

• Amazon S3 has maintained aggregate availability far

in excess of our stated SLA for the last yearin excess of our stated SLA for the last year

• Amazon AWS is hiring: http://aws.amazon.com/jobs

QUESTIONS?

