AMAZON S3: ARCHITECTING FOR
RESILIENCY IN THE FACE OF

FAILURES

Jason McHugh




CAN YOUR SERVICE SURVIVE?




CAN YOUR SERVICE SURVIVE?

D anrie

Blackout! . L. AdBrite is temporarily unavailable due to scheduled maintenance.
Our power is down. Technorati will be back up soon.

In the meanwhile, please enjoy a game of pac-man. Click "play game" and use your arrow Keys. !

ot LiveJournal Status

Craigshist and many other sites are having issues at the colo facility.

LiveJournal is down. There has been a power outage at our data Center. We are working as

Please sit tight, and try again later.
X quickly as possible to restore service.

Wie are aware of the situation, and the happy craigslist elves are scunrying to make

Libag o GMI (Tuesday July 24
-
Aeal Peophe, Resl Reviews. ™ -“ Pad

Yelp is currently down for maintenance. MvpePad is currenthy unavailable. We apologize for the inconvenience, and we're working hard o bring
thie service back onling as soon as possible, For updates and more information, wisit

STATUS, SINAD AT COM.

This blog is temporarily unavailable because of system maintenance.
We expect to be back online soon.
Thank you for your patience.

== USATODAY.com Managing Editor Chet Czarniak




CAN YOUR SERVICE SURVIVE?

Datacenter loss of connectivity
Flood

Tornado
Complete destruction of a datacenter

containing thousands of machines




KEY TAKEAWAYS

e Dealing with large scale failures takes a
gualitatively different approach

e Set of design principles here will help
« AWS, like any mature software organization, has

learned a lot of lessons about being resilient in
the face of failures




OUTLINE

AWS
Amazon Simple Storage Service (S3)

Scoping the failure scenarios
Why failures happen
Failure detection and propagation

Architectural decisions to mitigate the impact of
failures

Examples of failures




ONE SLIDE INTRODUCTION TO AWS

Amazon Elastic Compute Cloud (EC2)

Amazon Elastic block storage service (EBS)
Amazon Virtual Private Cloud (VPC)

Amazon Simp
Amazon Simp
Amazon Simp

e storage service (S3)

e queue service (SQS)

eDB

Amazon Cloudfront CDN

Amazon Elastic Map-Reduce (EMR)
Amazon Relational Database Service (RDS)




AMAZON S3

Simple storage service
Launched: March 14, 2006 at 1:59am
Simple key/value storage system

Core tenets: simple, durable, available, easily
addressable, eventually consistent

Large scale import/export available

Financial guarantee of availability
— Amazon S3 has to be above 99.9% available




AMAZON S3 MOMENTUM

52 Billion

Q3 2009: 82 billion
Peak RPS: 100,000+

18 Billion

5 Billion

Q1 2006 Q1 2007 Q1 2008 Q1 2009

Total Number of Objects Stored in Amazon S3




FAILURES

e There are some things that pretty much everyone
knows

— Expect drives to fail

— Expect network connection to fail (independent of the
redundancy in networking)

— Expect a single machine to go out

Central
Coordinator Workers

Datacenter #lDatacenter #1Datacenter #3 Datacenter #2




FAILURE SCENARIOS

Corruption of stored and transmitted data
Losing one machine in fleet
Losing an entire datacenter

Losing an entire datacenter and one machine in

another datacenter




WHY FAILURES HAPPEN

Human error
Acts of nature
Entropy

Beyond scale




FAILURE CAUSE: HUMAN ERROR

Network configuration
— Pulled cords

— Forgetting to expose load balancers to external traffic

DNS black holes B &

Software bug Y
Failure to use caution
while pushing a rack

of servers




FAILURE CAUSE: ACTS OF NATURE

e Flooding
— Standard kind
— Non-standard kind: Flooding from the roof down

e Heat waves

— New failure mode: dude that drives the diesel truck

e Lightning

— It happens
— Can be disruptive




FAILURE CAUSE: ENTROPY

e Drive failures

— During an average day many
drives will fail in Amazon S3

e Rack switch makes half the hosts in rack unreachable

— Which half? Depends on the requesting IP.
e Chillers fail forcing the shutdown of some hosts

— Which hosts? Essentially random from the service owner’s
perspective.




FAILURE CAUSE: BEYOND SCALE

e Some dimensions of scale are easy to manage

— Amount of free space in system
— “Precise” measurements of when you could run out
— No ambiguity
— Acquisition of components by multiple suppliers
e Some dimensions of scale are more difficult
— Request rate
— Ultimate manifestation: DDOS attack




RECOGNIZING WHEN FAILURE HAPPENS

e Timely failure detection

e Propagation of failure must handle or avoid
— Scaling bottlenecks of their own
— Centralized failure of failure detection units
— Asymmetric routes

#1 is healthy #1 is healthy Reibshlthy#1

Service 1 Service 2 Service 3




GOSSIP APPROACH FOR FAILURE DETECTION

e Gossip, or epidemic protocols, are useful tools when
probabilistic consistency can be used

e Basicidea

— Applications, components, or failure units, heartbeat their
existence

— Machines wake up every time quantum to perform a
“round” of gossip

— Every round machines contact another machine randomly,
exchange all “gossip state”

e Robustness of propagation is both a positive and
negative




S3’s GOsSIP APPROACH — THE REALITY

e No, it really isn’t this simple at scale

— Can’t exchange all “gossip state”
e Different types of data change at different rates

e Rate of change might require specialized
compression techniques

— Network overlay must be taken into consideration
— Doesn’t handle the bootstrap case
— Doesn’t address the issue of application lifecycle

e This alone is not simple

e Not all state transitions in lifecycle should be
performed automatically. For some human
intervention may be required.




DESIGN PRINCIPLES

e Prior just sets the stage

e 7 design principles




DESIGN PRINCIPLES — TOLERATE FAILURES

e Service relationships

Service 1

Calls/Depends on

Upstream from #2

> Service 2

Downstream from #1

e Decoupling functionality into multiple services
has standard set of advantages

— Scale the two independently

— Rate of change (verification, deployment, etc)

— Ownership

— encapsulation and exposure of proper primitives




DESIGN PRINCIPLES — TOLERATE FAILURES

e Protect yourself from upstream service
dependencies when they haze you

e Protect yourself from downstream service
dependencies when they fail




DESIGN PRINCIPLES — CODE FOR LARGE FAILURES

e Some systems you suppress entirely
e Example: replication of entities (data)

— When a drive fails replication components work quickly

— When a datacenter fails then replication components do
minimal work without operator confirmation
~ To Datacenter #3

_ _
StJrage

StJrage

Datacenter #1 Datacenter #2




DESIGN PRINCIPLES — CODE FOR LARGE FAILURES

e Some systems must choose different behaviors based
on the unit of failure

< < < <
U W B
Storage Storage

Datacenter #1 Datacenter #2

< < < <

Storage Storage

Datacenter #3 Datacenter #4




DESIGN PRINCIPLE — DATA & MESSAGE
CORRUPTION

e At scaleitis a certainty

e Application must do end-to-end checksums
— Can’t trust TCP checksums

— Can’t trust drive checksum mechanisms

e End-to-end includes the customer




DESIGN PRINCIPLE — CODE FOR ELASTICITY

e The dimensions of elasticity

— Need infinite elasticity for cloud storage
— Quick elasticity for recovery from large-scale failures

e |ntroducing new capacity to a fleet

— |ldeally you can introduce more resources in the system
and capabilities increase

— All load balancing systems (hardware and software)
e Must become aware of new resources
e Must not haze
e How notto do it




DESIGN PRINCIPLE — MONITOR, EXTRAPOLATE,
AND REACT

Modeling
Alarming
Reacting
Feedback loops

Keeping ahead of failures




DESIGN PRINCIPLE — CODE FOR FREQUENT
SINGLE MACHINE FAILURES

e Most common failure manifestation — a single box

— Also sometimes exhibited as a larger-scale uncorrelated
failure

e For persistent data consider use Quorum

— Specialization of redundancy
— If you are maintaining n copies of data

e \Write to w copies and ensure all n are eventually
consistent

e Read from r copies of data and reconcile




DESIGN PRINCIPLE — CODE FOR FREQUENT
SINGLE MACHINE FAILURES

e For persistent data use Quorum

— Advantage: does not require all operations to succeed on all
copies

e Hides underlying failures
e Hides poor latency from users
— Disadvantages
e I[ncreases aggregate load on system for some operations
e More complex algorithms
e Anti-entropy is difficult at scale




DESIGN PRINCIPLE — CODE FOR FREQUENT
SINGLE MACHINE FAILURES

e For persistent data use Quorum

— Optimal quorum set size

e System strives to maintain the optimal size even
in the face of failures

— All operations have a “set size”

e |f available copies are less than the operation set
size then the operation is not available

e Example operations: read and write

— Operation set sizes can vary depending on the
execution of the operations (driven by user’s access
patterns)




DESIGN PRINCIPLE — GAME DAYS

e Network eng and data center technicians turn off a
data center
— Don’t tell service owners
— Accept the risk, it is going to happen anyway
— Build up to it to start
— Randomly, once a quarter minimum
— Standard post-mortems and analysis

e Simple idea — test your failure handling — however it
may be difficult to introduce




REAL FAILURE EXAMPLES

Large outage last year

Traced down to a single network interface card
Once found the problem was easily reproduced
Corruption leaked past TCP checksuming on the

single communication channel that did not have
application level checksuming




REAL FAILURE EXAMPLES

e Network access to Datacenter is lost

e Happens not infrequently
Several noteworthy events in the last year
Due to transit providers, networking upgrades, etc.
None noticed by customers
Easily direct customers away from a datacenter

e |t helps that we run game-days and irregular
maintenance by failing entire datacenters




REAL FAILURE EXAMPLES

e Network route asymmetry

— Learning about machine health via gossip

— Route taken to learn about health might not be the same
taken by communication between two machines

— Results in split brain
e | think that machine is unhealthy
e Everyone else says it is fine, keep trying




REAL FAILURE EXAMPLES

e Rack switch makes all or some of hosts unreachable

e Must handle losing hundreds of disks simultaneously

— Independent of fixing the rack switch and the timeline
some action needs to be taken

— Intersection of a hundreds of sets of objects (say each set
is 10 million objects) efficiently taking into account state of
the world for other failed components




DESIGN PRINCIPLES RECAP

Expect and tolerate failures
Code for large scale failures

Expect and handle data and message corruption

Code for elasticity

Monitor, extrapolate and react

Code for frequent single machine failures
CEIMERCENR




WHAT | HAVEN'T DISCUSSED

Unit of failures

Coalescing reporting of failures intelligently
How to handle a failure

Recording and trending of failure types
Tracking and resolving failures

In general all issues related to maintaining a good
ratio of support burden to fleet size




CONCLUSION

Just scratching the surface

Set of design principles which can help your system
be resilient in the face of failures

Amazon S3 has maintained aggregate availability far

in excess of our stated SLA for the last year

Amazon AWS is hiring: http://aws.amazon.com/jobs




QUESTIONS?




