
  

Groovy On The Trading Desk:

Best Practices Developed From 
Distributed Polyglot Programming

Jonathan Felch
jonathan.felch@gmail.com
JonathanFelch on Twiiter

mailto:jonathan.felch@gmail.com


  

Agenda
− Groovy Main Point

 Groovy Manifesto
 Major Language Features

− Computational Finance and Distributed Computing 
 Finance Specific:  Math / Data / Business / Languages
 Groovy Lessons: Use Cases

− Smart Grid and Dynamic Programming
 Data Grid: Moving Data Around
 Computational Grid: Moving Work and Code Around 
 Operator Overloading and Dependency Graphs
 Groovy Lessons: Groovy Types, Dynamic Methods, GPars

− Functional Programming and The Problem of State
 Objects Versus “Smart Tuples”
 Closures, Operators, Currying and Chaining
 Groovy Lessons: Groovy Uses Or Groovy Is ?
 Groovy Type System: Friend or Foe?



  

Introduction

Jonathan Felch

− NASDAQ Software Architect 1997-99
− Lehman Brothers Global e-Commerce Architect 1999-2000
− Venture Capital Associate @ GS / BCG JV 2000-2001
− Quantitative Systems @ Syntax Capital 2005-2006
− VP Quantitative Prop Trading @ Credit Suisse 2006-2009
− Quant Trader @ E.H. Smith Jacobs High Frequency 2009+

jonathan.felch@gmail.com
JonathanFelch On Twitter and LinkedIn

mailto:jonathan.felch@gmail.com


  

Groovy Manifesto
 is an agile and dynamic language for the Java Virtual Machine
 builds upon the strengths of Java but has additional power features 

inspired by languages like Python, Ruby and Smalltalk
 makes modern programming features available to Java developers 

with almost-zero learning curve
 supports Domain-Specific Languages and other compact syntax so 

your code becomes easy to read and maintain
 makes writing shell and build scripts easy with its powerful processing 

primitives, OO abilities and an Ant DSL
 increases developer productivity by reducing scaffolding code when 

developing web, GUI, database or console applications
 simplifies testing by supporting unit testing and mocking out-of-the-

box
 seamlessly integrates with all existing Java objects and libraries
 compiles straight to Java bytecode so you can use it anywhere you 

can use Java



  

Groovy Use Cases

 Super Glue

 Half Baked Ideas

 Cookie Cutter Apps For Really Good Cookies

 Meta-Programming, Builders, And DSLs



  

Super Glue Example
Combine GUI Library (Swing), Network Library, and 
XML Parser to make RSS Feed

def url ='http://www.groovyblogs.org/feed/rss'
def items = new XmlParser().parse(url).channel.item
def cols = 'pubDate title description'.tokenize()
groovy.swing.SwingBuilder.build {
 frame(id:'f', title: 'Groovy RSS', visible:true) {
   scrollPane {
     table {
       tableModel(list: items) {
         cols.each { col →
           closureColumn header: col, 

read: { it[col].text() }
     } } } } }
   f.pack()
 }



  

Groovy Performance: 
Numeric Collections

Operator Overloading Creates Implicit 
Dependency Graph That Optimizes Evaluation

−
Only Re-calculate Values That Change

 Overloading operators in numeric collections allow numeric 
operations to only-recalculate variations in the dependency 
graph

 JIT / Optimizers will load partial expressions into CPU 
registered

− Closures as formulas
 Rather than using loops for executing an expression many 

times, the collections can be mixed with numeric values 
and constants in a single expression



  

Groovy Performance: Numeric Grid

//  Monte Carlo Simulation For European Put Option in 10 Lines Or Less

def px = 100, r = 0.05, vol = 0.15, t = 1.0 
def strikes = [80, 90, 100, 110, 120 ]
def w = RandomNumbers.getNormDist(1000,1000)
def S = px * Math.E ** ((r - ½ * vol * vol) * t + sqrt(t) * vol * w)
strikes.each { K → 
  def optionValue = Math.max(0, S – K)
  def df = exp(-rate * time)
  println “${strike} : ${df * optionValue as Number}”
}

// In Java or C You Would Have To Loop



  

Why Groovy ?
 Pith, Speedy Development Cycle

− Made for half baked ideas

 Learning Curve
− Familiar To Java Programmers, Java Syntax is (Mostly) 

Groovy Syntax

 Dynamic Programming
− Meta-Programming, DSL Support

 Java / JEE / Enterprise
− Easy Stuff Is Actually Easy 

 Community



  

What is Quant Finance ?

A quant designs and implements software and 
mathematical models for the pricing of 
derivatives, assessment of risk, or predicting 
market movements

S t=S0 e
−1

2
2tt 



  

What's The Problem: The Math
 Quant Finance Models are Wrong

− Even The Best Models Fail, Failure Is Expensive

 Assumption of Quantitative Finance Are Wrong
− Market Are Social Phenomena
− Not Random Walks, Not Natural Systems

 Quant Finance Models Change
− In Bad Times, They Change A Lot

 Coding Almost everything in C++ takes forever

 Coding Everything Else in VBA doesn't scale



  

What's The Problem: The Market
 Market Structures Drive Financial Data

− Different Calendars, Different Measures
− Equities and Government Auctions are Transparent

 Also options, some bonds, some preferred

− Exotic and Credit Markets are Illiquid, No 
Transparency

 Some of products are not really 'securities'

 Identifiers are ridiculous, don't work, unclear
− ISIN, CUSIP, SEDOL, Tickers, ADRs, …
− Lifecycle of a Bond's ISIN (144a, Reg S, Registered)



  

What's The Problem: The Data

 Lots of Data, Lots of Math, Lots of Products
− Credit Market Subset

 1500 Companies / 2500 Curves / 10 Indices & Tranches
 10,000 Liquid Bonds / 2,000 Liquid Converts / 2,000 Loans
 1500 Liquid Equities / 169 point vol surface to start

− Derivatives and Quant strategies have many metrics 
for each time series observation

 Securities can't be compared on price
 Relative values metrics are complex and there are many



  

What's The Problem: The Traders
 Great Trades Come From Half-Baked Ideas 

− Fully Baked Ideas Have Already Been Priced In

 Traders Do Not Know What They Want
− Good traders ride the cusp of intuition and logic

 Whatever They Think They Want, They Wanted 
It Yesterday

 Whatever They Want Today, They Will Never 
Use Again

− Downside of the half baked idea



  

The Evils Of Financial Databases I

WRONG WAY:
SELECT DATE, PRICE, (TS1.PRICE+ 
TS2.PRICE+TS3.PRICE) / 3 AS SMA_3

FROM TIMESERIES TS1, 
  TIMESERIES TS2, TIMESERIES TS3

WHERE TS1.TICKER = TS2.TICKER   |
  AND TS2.TICKER = TS3.TICKER AND
  TS2.DATE = (TS1.DATE-1) AND 
  TS3.DATE = (TS2.DATE-1) AND
  TS1.TICKER = 'ABC'  

Date Price SMA_3

3 102 101
4 103 102
5 104 103
6 105 104

Date Price Ticker

1 100 ABC

2 101 ABC

3 102 ABC

4 103 ABC



  

Languages of Quant Finance
 Commonly used languages of Quant Finance

− C++ (The Dominant Industrial Strength Language)
− VBA 
− Matlab, SAS, STATA, S+, and R
− C#
− Java (Most limited to Fixed Income and Web)

 Up and Coming / Research Languages of 
Interest to Quant Finance

− Fortress, Scala, Groovy, Python, F#, and Erlang



  

Where Should We Go
 Polyglot Coding:

− Use C++ or Java Where You Need To
− Extend That Foundations With Python, Groovy, Lua, 

Ruby, Scala, or some other dynamic language with 
support for closures, meta-programming, and high-
level operations 

  Post-SQL Data Management
− Combine Column Oriented and Row Oriented 

Database Features In Cache
− Use Cache and Workspace and Integration Space
− Allow “Objects” to Evolve Dynamically
− Naturally Order Data Is Ordered In Cache



  

Groovy Performance: 
Bad News

Overhead if NumericGrid Had Been Written in 
Groovy Rather than Groovy-Aware Java

− Type System: 
 Groovy Really Likes Java Collections, But Not Array
 Groovy Really Likes BigDecimal, But Not Primatives
 Groovy Really Likes Duck Typing

− Method Invocation

− Gparallelizer (Now Gpars) 
 DSL For the JSR 166y ParallelArray Would Have Invoked 

Many Copies of Groovy Collections Into Primative Maps



  

Databases versus Caching
 Traditional Model: Hibernate

− Data Model = Database plus Cache of POJOs
 All Objects of the name class share structure
 No (Persistent) Dynamic Properties on 1st class objects
 All first class objects (query-able) lived in the database

 Our Model: All POJOs → TupleMaps or Nodes
− Tuples of same class may 'grow' existing structure
− Tuples do not all have to come from data

 Questions about what does and does not belong in 
database

 Query Language = Gpath / Xpath + Hibernate
 Includes dynamic properties and calculated values



  

Distributed Cache and 
MetaProgramming I

 Terracotta for the shared memory and 
synchronization

− Integration point for Hibernate and Hibernate 
Cache

− Integration point for Groovy Data Adapters

 All First Class Objects are decomposed from 
Java or Groovy objects to a 'Tuple'

− Not perfectly named, but a simple data structure 
than implements Map and List

− Usable with XPATH
− Small Set of Primitives optimized for Terracotta



  

Distributed Cache and 
Meta-Programming II

 Everything is a Property
− Data and methods
− Behavior follows a mathematical model
− Property listeners manage invalidation 

 Missing Methods / Missing Properties
− Widely used calculations and method results stored 

as property values so avoid redundant calculation
− Calculated values are never stored in the database



  

Distributed Cache and 
Meta Programming III

 Tuple Class  
− Much like a Groovy Class
− Joins objects like associations / relations in 

Hibernate 
− Defines raw types / names / converters
− Defines property finders / chained finders / 

methods

 Missing Methods / Missing Properties
− Widely used calculations and method results stored 

as property values so avoid redundant calculation
− Calculated values are never stored in the database



  

Distributed Cache and 
Meta Programming IV

 Do We Even Want A Database ??
− Sometimes Accessing Data Remotely Works Just 

As Well
− Sometimes Pulling Data from Flat Files On 

Demand works Just As Well
− Sometimes Calculating from Values from old inputs 

makes more sense than persisting it (normal forms)

 'Active' Cache As a Integration Space
−



  

Distributed Cache and 
Meta Programming IV

 Did TupleMap and Tuple Class Simply Re-
Create The Object ?

− Functional Closures != Methods
− State Is Never Shared
− Curried Closures Can Move Large Tasks to 

Distributed Work Queues or Thread Pools

 Data + Computational Grid = Scheduling Fun
− Move Work Requests To Where Data Lives
− Send Curried Closures To Computational Engines



  

Grails As A Integration Hub
 Controller requests arrive via JSON, XML, JMS

− R Language Client:  JSON → Grails
− Excel Client: JSON → Grails Over HTTP
− Excel RTD: JSON → Grails over JMS
− SwingX Table (Real-Time) JSON → Grails via JMS
− SwingX Table JSON → Grails via HTTP

 Affiliated Business Units:
− XML Web Services from dot Not
− Matlab dot Net



  

Cache Logic: Reporting
def r = builder.reportWith(Bond.class, ”bond.cdsBasis < 0”) {
   attr {
      expression = 'bond.ticker'
      name = 'Tkr'
   }
   attr {
      expression = 'bond.coupon'
      name = 'Tkr'
   }
   attr {
      expression = 'bond.maturity'
      name = 'Tkr'
   }
   attr {
      expression = 'bond.spot?.price?.last'
      name = 'Px'
   }
   attr {
      expression = 'bond.spot?.yield?.last'
      name = 'Px'
   }
   attr {
      expression = 'bond.spot?.zspread?.last'
      name = 'Px'
   }
   attr {
      expression = 'bond.spot?.cdsBasis?.last'
      name = 'Px'
   }
} 



  

Grails to Excel I: 
DASL(Ticker,Exp)

Ticker /
Expression

JAVA 
Equity

ORCL 
Equity

GM 
Equity

IBM 
Equity

it.spot.px 9.0 18.42 1.09 101.37

it.volSurface.find(delta : 50, expiry : 
365).spot.iVol

22 44 180 39

it.cds.spot.spread 65.31 63 23730 60

it.refBond.spot.zspread 230 55 18700 57

it.cds.spot.basis -164.7 8 1030 3

it.fin.mrq.netDebt -300 10000 28846 21000

it.fin.mrq.totalDebt / 
it.fin.mrq.ebitda

N/A 5.5 N/A 6.3



  

Grails to Excel II: 
DSLH(Ticker,Exp,Start,End)

Ticker /
Expression

JAVA 
Equity

ORCL 
Equity

GM 
Equity

IBM 
Equity

it.spot.px 9.0 18.42 1.09 101.37
15 May 2009 9.0 18.42 1.09 101.37

14 May 2009 9.0 18.46 1.15 101.05
13 May 2009 8.95 18.07 1.21 102.26
12 May 2009 9.05 18.38 1.15 103.94
11 May 2009 8.91 18.56 1.44 99.83
8 May 2009 8.71 18.32 1.61 101.49

 Expressions can be complex, traverse related 
objects, join disparate data sources 



  

Grails to Excel III: 
DSLR(Report[Optional Para])

=DSLR('SUNMA') EqyPx CDS Bond Basis Debt Leverage
JAVA Equity 9.0 63 230 -164.7 -300 N/A

ORCL Equity 18.42 63 55 8 10000 5.5

IBM Equity 101.37 60 57 3 21000 6.3



  

Dasel: 
A DSL for Financial Data

 Injectable Closures Into Tuples for “Column” 
Definitions

 Simple Reporting / Excel Grammar

 GRAILS Rendered Everything Into Web Pages 
or JSON / XML Services 

 Component Library For Quantitative Analysis

 Massively Scalable Time Series Data Cache



  

The Revolution I
Technology And Finance

PDP-11 IBM 
PC    SPARC    EMAIL   WEB   XML    GRID

 The Network Is The Computer
− We Can't Agree On Which End Of The Byte 

Comes First (Big Endian / Little Endian)
− We Can't Agree On Character Set and Line 

Delimiters (EBCIDEC, ASCII, Unicode)
− We Can't Agree How to Share Files
− We Can't Agree How To Share Code



  

Groovy Gotchas
 Pimping my library → Not Always Helping

− GPars:  Copies are expensive, the syntax is great

 Language Gotchas

 Dynamic Method Invocation
− More Expensive than it should be

 'Groovy' Can Be Expensive: Abusing Each 
− Anonymous Closures Versus loops (list.each {} )


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

