

ThoughtWorksThoughtWorks

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 blog: memeagora.blogspot.com

 twitter: neal4d

 PAUL GROSS software developer / consultant

 ThoughtWorks

 pgross@thoughtworks.com
 200 E. Randolph St, 25th Floor, Chicago, IL 60601-6501

 pgross@thoughtworks.com

 www.pgrs.net

 www.thoughtworks.com

Rails in the Large:
Building the Biggest (Enterprise)

Rails Application in the World

what OVE.com does

the pursuit

Go for the one that’ll beat the
one that’ll beat the one you
last did

.NET Rails

Business AnalystProject manager

DeveloperTech Lead

quick start: october 2006

Added one pair every 2 weeks

Started with 2 pairs

8 or 9 pairs by July

inception: Jan 17, 2007

6 quality assurance

11 pairs of developers 8 business analysts

client principle
project manager

now

iteration manager

spikes are your friends!

technology isn’t as important as responsiveness
to business needs

don’t try to convince too early

demonstration over arguments

lessons learned

infrastructure

Rock is for Rookies:
males have a

tendency to lead
with Rock on their

opening throw

pairing workstations

XServe (Selenium Grid)

physical infrastructure

BA

standalone QA

integrated QA

UAT
(sneak peak)

deployment stack

10 web boxes 2 image servers

background server memcache

4 database
servers

technical stats

environment

Mac OS X rocks

scale infrastructure opportunistically...

...but don’t wait too long

have fun

lessons learned

testing

Scissors on First:
play scissors as your

opening move against a
more experienced player

disconnected unit tests

UnitRecord and the evolution of unit
tests that don’t hit the database

http://github.com/dan-manges/unit-record

unit tests

the rule:

unit tests don’t hit the
database

mock everything

functional tests

no mocking allowed in
functional tests

tests that hit the database are
slooooow

DeepTest

http://github.com/qxjit/deep-test

DistributedDeepTest

prefer factories over
fixtures

Selenium grid

new instances added
as needed

deployment & testing

write smart tests

fight the battle to keep tests fast

invent stuff if you have to

scale development infrastructure just like
production infrastructure

lessons learned

knowledge transfer

Paper is the least obvious
of opening moves.

project Mingle on the
wall

cc_board

http://github.com/qxjit/cc_board/

jukebox.rb

http://subversion.hammersforge.com/
jukebox.rb/trunk/

currently in alpha

play a song when a
build breaks

pairing stations

adium

no email

internal Jabber server
chat rooms

devs
BAs
QAs

shared buddy list

automatically set pair
name

adium

Mingle card (upon commit)

co-location rocks

software is more about communication than
technology

use information radiators

have fun

pairing really rocks

lessons learned

automate
everything

When playing with
someone who is not

experienced at the RPS,
look out for double runs
or, in other words, the

same throw twice.

1-click deploy to any
environment

using cc.rb as easy deployment
tool

verification (language keys)

run all unit tests

run all functional tests

commit

rake commit

http://github.com/pgr0ss/rake_commit_tasks

canonical pairing station
maintenance

cap pairing_stations

radmind
http://rsug.itd.umich.edu/software/radmind/

strict rules for
advanced
language
features

Tell your opponent
what you are going to
throw and then actually
throw what you said.

monkey patches all live
in extensions folder

modularize extensions
extend (or include)
into real class

ancestors

where did you come
from again?

test the extensions

duh!

include a version test
to break upon upgrade

use meta-names
somewhere

ack is your friend

background processing

Try playing the throw that would have
lost to your opponents last throw

run at a certain time
CRON-like behavior

progress bars
image downloading

Asynchronous behavior

counts
updating cached values

continually run

3 kinds

evolution of async
messaging

do work inline

gets slower over time

traffic goes up

use backgroundrb for
simple message queue

backed by database

switch to a real
messaging queue

(Starling)

YAGNI

emergent design around async
messaging

don’t use databases as message queues (for too
long anyway)

avoid anticipatory design

gradually add complexity

DBA’s can sometimes get grumpy

lessons learned

external dependencies

When playing against someone who asks you to remind them about the
rules, take the opportunity to subtly "suggest a throw" as you explain to

them by physically showing them the throw you want them to play.

make well defined
boundaries

mock and stub
boundaries

externals builds to test
service changes

we often catch bugs &
downtime in other services

tests to validate WSDLs
haven’t changed

tests to call services

check that responses haven’t
changed

tests to check against
content & html editors

non-printable characters

duplicate ids

performance &
optimization

When all else fails, go with paper: Statistically, in competition play, it
has been observed that scissors is thrown the least often.

not that many page
views...

...really complex pages!

custom hand-tuned
SQL

Memcache sessions &
many database lookups

MySQL replication

use separate boxes for
ETL schemas

write priority

challenges

For tournament play, learn the Great Eight Gambits.

scaling is hard

no matter the technology

rails can scale!

daily web trends

monthly web trends

upgrading is hard

1 pair => 6 weeks to upgrade from 1.2.3 to 2.2

back port fixes &
improvements

rails

other plugins

we did not replicate a
freakin’ type system!

of is_a?, kind_of? instance_of? / Total LoC

32/32379 => code (0.09%)
60/103421 => tests (0.06%)

why all the
rochambeau stuff?

view builds are slow =>

separate cc.rb build =>

1 pair assigned as view
masters

view builds are fragile =>

worst ...job ...ever

today’s view master
assigned by
yesterday’s...

...or play RPS

http://www.worldrps.com/

would we do it again?

hell yeah!

ThoughtWorks

?’s
This work is licensed under the Creative Commons

Attribution-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-sa/3.0/us/

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 blog: memeagora.blogspot.com

 twitter: neal4d

 PAUL GROSS software developer / consultant

 ThoughtWorks

 pgross@thoughtworks.com
 200 E. Randolph St, 25th Floor, Chicago, IL 60601-6501

 pgross@thoughtworks.com

 www.pgrs.net

 www.thoughtworks.com

