
JRuby: You’ve got Java
in my Ruby

Thomas E. Enebo
<tom.enebo@gmail.com>

JRuby Architect, Engine Yard

Differing Goals

Two Audiences?

Ruby - “Why JVM is good for Ruby impl”

Java - “Appreciate how the JVM
complements another language and learn a
little Ruby along the way”

Who am I?

JRuby co-lead

Java guy (since the beginning?)

Ruby guy 7-8 years

Employed by Engine Yard to work on JRuby!

“It’s my day job”

What is JRuby?

Ruby on the JVM (Java 5+)

Open-Source: GPL/CPL/LGPL

1.8.7 compatible

Has 1.9-mode (--1.9)

JRuby Boasts...

Great Compatibility

Fast!

Native Threads

All the JVM Buzzwords

More on this a little later

Note on Compatibility

~37,000 passing rubyspecs

~22,000 passing assertions

CI Runs

Java versions, platforms, common libraries

Incompatibilities

Missing some POSIX behavior (e.g. no fork())

No continuations (callcc)

Slower Startup

Cannot run native C extensions <-- Biggest :(

Java Native Extensions (ar-jdbc, yaml, ...)

Foreign Function Interface (FFI)

Foreign Function
Interface (FFI)

require 'ffi'

module POSIX
 extend FFI::Library
 # not usually necessary since libc is always linked
 ffi_lib 'c'

 attach_function :getuid, :getuid, [], :uint
 attach_function :getpid, :getpid, [], :uint
end
puts "Process #{POSIX.getpid}, user #{POSIX.getuid}"

JRuby Status Update

JRuby 1.4.0 released (November 2, 2009)

New Embedding framework: RedBridge

Improved windows support + installer

New bug-for-bug YAML parser: Yecht

400+ issues resolved since 1.3.1

JRuby 1.5 coming around new years

JVM Appreciation

JVM is Mature...

“silver-back” implementations

Decades of debugging and optimizations

Capable of incredibly long uptimes

Keeps improving over time...

JVM keeps improving...

JVM is Pervasive...

Every OS you know runs JVM including a
few you don’t

Most machines already have JVM installed

JVM Hotspot

Dynamic profiling your application to optimize
the chunks of code which matter

Can runtime profiling be smarter than a
static compiler?

Are you smarter than your runtime?

Hotspot Session

Disclaimer: All optimizations shown can
happen, but this is merely representative

Hotspot Session:
Initial Code

Vector v = new Vector(3); // Thread-safe
list
....
reset(v); // Called many times
....
void reset(Vector v) {
 for (int i = 0; i < v.size(); i++) {
 v.set(i) = 0;
 }
}

Hotspot Session:
Inlining

void reset(Vector v) {
 fast_guard(v) {
 for (int i = 0; i < lock { arr.length }; i++) {
 lock { arr[i] = 0; }
 }
 }
}

Hotspot Session:
Simple Optz (loop unroll)

void reset(Vector v) {
 fast_guard(v) {
 lock { arr[0] = 0; }
 lock { arr[1] = 0; }
 lock { arr[2] = 0; }
 }
}

Hotspot Session:
Lock Coarsening

void reset(Vector v) {
 fast_guard(v) {
 lock {
 arr[0] = 0;
 arr[1] = 0;
 arr[2] = 0;
 }
 }
}

Hotspot Session:
Array Copy Stubs
void reset(Vector v) {
 fast_guard(v) {
 lock {
 arrayCopyStub(v, [0,0,0])
 }
 }
}

Hotspot: Fractal

JVM: Multiple
performance profiles

JVM and Garbage!

Many Garbage Collectors to fit your
workload

Army of engineers working on them

Incremental, Compacting, Generational,
Concurrent, Parallel

Tons of tunables

JVM GCs: Incremental

Faster partial GC

Smaller discrete phases to reduce GC
pauses

Sometimes concurrent phases for no
pause

C Ruby is stop-the-world

JVM GCs: Compacting

No fragmentation

Runtime does not gobble all your memory
over time

No Fragmentation == Long runtimes

C Ruby is not compacting

JVM GCs: Generational

Short-lived objects collect EXTREMELY fast
via incremental collections

Long-lived object get promoted to different
object pool(s)

Ruby creates tons of short-lived garbage

C Ruby is not generational

Garbage Collection:
Parallel, Concurrent

Splitting GC across multiple cores

GC’ing while execution is still happening

Dark magic

Becoming more and more relevant in Multi-
core world

JVM GCs: Tunables!
-J-verbose:gc to give live GC information...

JVM Tools

Profilers

Debuggers

Verbose runtime information from VM

jconsole + JMX

JProfile Demo

Java IRB Demo

Midi and Swing in cut time!

Java Library Demo

JMonkeyEngine + JMEPhysics

3D-accelerated Scene-graph library

Is Ruby fast enough?

MADNESS!

Cleaning Up Java APIs

Ruby Language

Has less ceremony

Has features which Java doesn’t

Blocks

DSLs (aka Syntactic Gymnastics)

Less Ceremony == Easier
to consume

No type declarations

No checked exceptions

Much richer core libraries

Common tasks simplified

Blocks Remove
Boilerplate

def read(filename)
 open_file = Reader.new(JFile.new(filename))
 yield open_file
ensure
 open_file.close
end

read(“my_data_file”) do |fd|
 fd.read(30)
 # ... more stuff ...
end

Blocks & Reusability

Blocks & Reusability

Blocks & Reusability

Blocks & Reusability

DSLs (Syntactic Gym.)

Use Ruby syntax features to dress up Java
APIs

/* Missing try/catches.... */
DynamicPhysicsNode iceQube = getPhysicsSpace().createDynamicNode();
iceQube.attachChild(new Box("Icecube", Vector3f.new, CUBE_SIZE, CUBE_SIZE, CUBE_SIZE));
iceQube.generatePhysicsGeometry();
iceQube.setMaterial(Material.ICE);
TextureState textureState = DisplaySystem.getDisplaySystem().getRenderer().createTextureState
();
URL url = System.getResource("data/images/Monkey.jpg");
Texture texture = TextureManager.loadTexture(url, Texture::MinificationFilter:Trilinear,
Texture::MagnificationFilter::Bilinear, true);
texture.setWrap(Texture::WrapMode::Repeat);
textureState.setTexture(texture);
setRenderState(textureState);
iceQube.computeMass();
iceQube.getLocalTranslation().set(START_X, START_Y, START_Z);

@icecube = physics_space.create_dynamic do
 geometry Cube("Icecube", CUBE_SIZE)
 made_of Material::ICE
 texture "data/images/Monkey.jpg"
 at *START
 end

Conclusions

JVM is a great base for languages

Java libraries are easy to Rubify

Thanks

jruby: http://www.jruby.org/

email: tom.enebo@gmail.com

twitter: tom_enebo

blog: http://blog.enebo.com/

jrme: http://www.kenai.com/projects/jrme

