Netflix in the Cloud

Nov 3, 2010
Adrian Cockcroft

@adrianco #netflixcloud
acockcroft@netflix.com
http://www.linkedin.com/in/adriancockcroft

With more than 16 million subscribers in the
United States and Canada, Netflix, Inc. is the
world’s leading Internet subscription service

for enjoying movies and TV shows.

Why Give This Talk?

Netflix is Path-finding

The Cloud ecosystem is evolving very fast
Share with and learn from the cloud community

adrianco adrian cockeroft
This week's choice: buy/sell cloud at #CloudExpo or build/use cloud
at #QConSF, I'm a user, you?
15 hours ago

We want to use clouds,
not build them

Cloud technology should be a commodity

Public cloud and open source for agility and scale

We are looking for talent

Netflix wants to connect with the very best
engineers

Why Use AWS?

amazon NETELIX
webservices"

We stopped building our own
datacenters

Capacity growth rate is accelerating, unpredictable
Product launch spikes - iPhone, Wii, PS3, XBox
Datacenter is large inflexible capital commitment

Customers
Q3 year/year +52% Total and +145% Streaming

18
16
14
12
10

8

T

\
|
N

6
4
2
0

2009Q2 200903
200904 »010Q1
2010Q2

2010Q3

Source: http://ir.netflix.com

Leverage AWS Scale
“the biggest public cloud”

AWS investment in tooling and automation
AWS zones for high availability, scalability
AWS skills are common on resumes...

Leverage AWS Feature Set
“two years ahead of the others”

EC2, S3, SDB, SQS, EBS, EMR, ELB, ASG, IAM, RDB

“The cloud lets its users focus
on delivering differentiating
business value instead of
wasting valuable resources
on the undifferentiated
heavy lifting that makes up
most of IT infrastructure.”

B =

Werner Vogels
Amazon CTO

amazon NETELLX
webservices"

Netflix Deployed on AWS

_ _NINS
Wi5F amazon
“¥ webservices"
Content Logs Play WWW API
|| Video — S3 — DRM — Search — Metadata
Masters
| EC2 | EMR | CDN | Movie | Device
Hadoop routing Choosing Config
: | : | TV Movie
S3 Hive Bookmarks Ratings Choosing
Business i
— CDN — _ — Logging — Similars — Mﬁblle
Intelligence iPhone

Carkamai I

C

Movie Encoding farm (2009)

Video
\ Masters |

EC2

S3

CDN

* Limelight

Tens of thousands of videos
Thousands of EC2 instances
Encoding apps on MS Windows
~100 speed/format permutations
Petabytes of S3

Content Delivery Networks

“Netflix is one of the largest customers
of the biggest CDNs Akamai and
Limelight”

Hadoop - Elastic Map-Reduce (2009)

Ve

] S3

EMR
Hadoop

— Hive

Business

Intelligence

Web Access Logs

Streaming Service Logs
Terabyte per day scale

Easy Hadoop via Amazon EMR
Hive SQL “Data Mart”
Gateway to Datacenter Bl

Slideshare.net talks
evamtse “Netflix: Hive User Group” http://slidesha.re/agJLAC

adrianco “Crunch Your Data In The Cloud” http://slidesha.re/dx40CK

Streaming Service Back-end
(early 2010)

PIay * PC/Mac Silverlight Player Support
* Highly available “play button”

Ve

- DRM * DRM Key Management

on * Generate route to stream on CDN

routing

* Lookup bookmark for user/movie

L sookmarks. * Update bookmark for user/movie

* Log quality of service

— Logging

Web site, a page at a time
(through 2010)

* Clean presentation layer rewrite

e Search auto-complete

| * Search backend and landing page
’» Movie and genre choosing

" Movie | * Star ratings and recommendations
\Choogng)

[** Similar movies
. Ratings | * Page by page to 80% of views

WWW

— Search

(leave account signup in DC)
— Similars

API| for TV devices and iPhone etc.
(2010)

REST API: developer.netflix.com

* Interfaces to everything else
 Metadata. * TV Device Configuration
* Personalized movie choosing
Device _ .
| Config * iPhone Launch in the cloud only
| TV Movie
Choosing | “Netflix is an API for streaming to TVs
_K Mobile \ (we also do DVD’s andawebsite)”
iPhone

Netflix EC2 Instances per Account

Y

S Y o

|

|

p~ dnlisiiy
Encoding | !
|

|

|

|

Test and Production |
L | logAnalysis | I |

Learnings...

Datacenter oriented tools don’t
work

Ephemeral instances
High rate of change

Cloud Tools Don’t Scale for
Enterprise

Too many are “Startup” oriented
Built our own tools
Drove vendors hard

“fork-lifted” apps don’t work well

Fragile

Too many datacenter oriented
assumptions

NETELLN

Faster to re-code from scratch

Re-architected and re-wrote most of the code
~ine grain web services

_everaged many open source Java projects

Systematically instrumented
“NoSQL” SimpleDB backend

“In the datacenter, robust code is best
practice. In the cloud, it’s essential.”

Takeaway

Netflix is path-finding the use of public AWS
cloud to replace in-house IT for non-trivial
applications with hundreds of developers and
thousands of systems.

(Pause for questions before we dive into details)

amazon NETELIX
webservices"

What, Why and How?

The details...

Synopsis

The Goals

— Faster, Scalable, Available and Productive
Anti-patterns and Cloud Architecture
— The things we wanted to change and why
Cloud Bring-up Strategy

— Developer Transitions and Tools

Roadmap and Next Steps

Goals

Faster
— Lower latency than the equivalent datacenter web pages and API calls

— Measured as mean and 99" percentile
— For both first hit (e.g. home page) and in-session hits for the same user

Scalable
— Avoid needing any more datacenter capacity as subscriber count increases
— No central vertically scaled databases
— Leverage AWS elastic capacity effectively

Available
— Substantially higher robustness and availability than datacenter services

— Leverage multiple AWS availability zones
— No scheduled down time, no central database schema to change

Productive
— Optimize agility of a large development team with automation and tools
— Leave behind complex tangled datacenter code base (~8 year old architecture)

— Enforce clean layered interfaces and re-usable components
NETELIX

Cloud Architecture Patterns

Where do we start?

Datacenter Anti-Patterns

What do we currently do in the
datacenter that prevents us from
meeting our goals?

Rewrite from Scratch

Not everything is cloud specific
Pay down technical debt
Robust patterns

Old Datacenter vs. New Cloud Arch

Central SQL Data base Distributed Key/Value NoSQL

Sl‘iCky In-Memory Session Shared Memcached Session

Chatty Protocols Latency Tolerant Protocols
Tangled Service Interfaces Layered Service Interfaces
Instrumented Code Instrumented Service Patterns

Fat Complex Objects Lightweight Serializable Objects

Components as Jar Files Components as Services

NETELIK

The Central SQL Database

* Datacenter has a central database
— Everything in one place is convenient until it fails

— Customers, movies, history, configuration

 Schema changes require downtime

Anti-pattern impacts scalability, availability

The Distributed Key-Value Store

* Cloud has many key-value data stores

— More complex to keep track of, do backups etc.
— Each store is much simpler to administer @
— Joins take place in java code

* No schema to change, no scheduled downtime

e Latency for Memcached vs. Oracle vs. SimpleDB
— Memcached is dominated by network latency <1ms
— Oracle for simple queries is a few milliseconds

— SimpleDB has replication and REST overheads >10ms

The Sticky Session

* Datacenter Sticky Load Balancing
— Efficient caching for low latency
— Tricky session handling code
— Middle tier load balancer has issues in practice

* Encourages concentrated functionality

— one service that does everything

Anti-pattern impacts productivity, availability

The Shared Session

* Cloud Uses Round-Robin Load Balancing
— Simple request-based code

— External shared caching with memcached

* More flexible fine grain services
— Works better with auto-scaled instance counts

Chatty Opaque and Brittle Protocols

e Datacenter service protocols
— Assumed low latency for many simple requests

* Based on serializing existing java objects
— Inefficient formats
— Incompatible when definitions change

Anti-pattern causes productivity, latency and
availability issues

Robust and Flexible Protocols

* Cloud service protocols
— JSR311/Jersey is used for REST/HTTP service calls
— Custom client code includes service discovery
— Support complex data types in a single request

* Apache Avro
— Evolved from Protocol Buffers and Thrift
— Includes JSON header defining key/value protocol

— Avro serialization is half the size and several times
faster than Java serialization, more work to code

Persisted Protocols

* Persist Avro in Memcached
— Save space/latency (zigzag encoding, half the size)
— Less brittle across versions
— New keys are ignored
— Missing keys are handled cleanly

* Avro protocol definitions
— Can be written in JSON or generated from POJOs
— It’s hard, needs better tooling

Tangled Service Interfaces

* Datacenter implementation is exposed
— Oracle SQL queries mixed into business logic

* Tangled code
— Deep dependencies, false sharing

e Data providers with sideways dependencies

— Everything depends on everything else

Anti-pattern affects productivity, availability

Untangled Service Interfaces

* New Cloud Code With Strict Layering
— Compile against interface jar

— Can use spring runtime binding to enforce

* Service interface is the service
— Implementation is completely hidden
— Can be implemented locally or remotely

— Implementation can evolve independently

Untangled Service Interfaces

Two layers:

* SAL - Service Access Library

— Basic serialization and error handling
— REST or POJQO’s defined by data provider

e ESL - Extended Service Library
— Caching, conveniences
— Can combine several SALs

— Exposes faceted type system (described later)
— Interface defined by data consumer in many cases

Service Interaction Pattern
Swimlane Diagram

First time request, new user, no cache hits, call cache service first, no need to notify

PRESENTATION LAYER - CLIENT

APPLICATION MOVIES ESL LOCAL CACHE
request check local lookup
not found
if miss return miss CACHE SAL
call remote cache serialize
GET key
if miss return miss
call service
result return result
LOCAL CACHE
update local cache store
stop return ok

MOVIES SAL
serialize
call service

deserialize
return result

CACHE SERVICE

CACHE SERVICE
lookup key

return not found

SERVLET
deserialize

MOVIES SERVICE

CACHE SERVICE
store val at key

return ok

CACHE SAL
serialize
PUT key/value

return ok

ENGINE
process request

best effort
start timer

serialize return result

response

save for
next time

stop

NETELLN

Service Architecture Patterns

* |Internal Interfaces Between Services
— Common patterns as templates
— Highly instrumented, observable, analytics
— Service Level Agreements — SLAs

* Library templates for generic features
— Instrumented Netflix Base Servlet template
— Instrumented generic client interface template
— Instrumented S3, SimpleDB, Memcached clients

CLIENT

Request Start
> Timestamp, AN Client
InL?ognd Request End outbound
deserialize end Timestamp serialize start
il E) timestamp
7 \
Inbound Client
deserialize outbound

start serialize end
timestamp timestamp

7 y
Clet netuork S e rVi ce R e q ue St Client Network

timestamp timestamp

? Instruments Every |
Step in the call e

. receive
timestamp timestamp
Service Service
outbound inbound
serialize end serialize start
timestamp timestamp
v E
Service Service
OLE DU SERVICE execute e
serialize start serialize end

request start
timestamp,

t t
end timestamp NETELLX

timestamp < timestamp

Boundary Interfaces

* |solate teams from external dependencies
— Fake SAL built by cloud team
— Real SAL provided by data provider team later
— ESL built by cloud team using faceted objects

* Fake data sources allow development to start
— e.g. Fake Identity SAL for a test set of customers
— Development solidifies dependencies early
— Helps external team provide the right interface

One Object That Does Everything

e Datacenter uses a few big complex objects
— Movie and Customer objects are the foundation

— Good choice for a small team and one instance
— Problematic for large teams and many instances

* False sharing causes tangled dependencies
— Unproductive re-integration work

Anti-pattern impacting productivity and
availability

An Interface For Each Component

* Cloud uses faceted Video and Visitor
— Basic types hold only the identifier
— Facets scope the interface you actually need
— Each component can define its own facets

* No false-sharing and dependency chains
— Type manager converts between facets as needed
— video.asA(PresentationVideo) for www
— video.asA(MerchableVideo) for middle tier

Software Architecture Patterns

* Object Models
— Basic and derived types, facets, serializable
— Pass by reference within a service
— Pass by value between services

 Computation and I/O Models
— Service Execution using Best Effort

— Common thread pool management

Netflix Systems Architecture

AWS EC2

b’

' Oracle
Replication _

l memcached I

Netflix

| Data Center
AWS Storage i NETELIX

Netflix Undifferentiated Lifting

Middle Tier Load
Balancing

i
il

R 4 A RV ‘ '
VAV TATAVAVAYAVAYAY VAYAYAYAVATAVAYIVAVAVAVAVAVAVA

Discovery (local DNS)| &
Encryption Services -
Caching

Distributed App
Management

We want cloud vendors to do all this for us as well!
NETELIX

Load Balancing in AWS

Middle tier currently not supported in AWS

— ELB are public-facing only

— Cannot apply security group settings

ELB vertical scalability for concentrated clients
— Too few proxy IP addresses leads to hot spots

ELB needs support for balancing heuristics
— Proportional balance across Availability Zones
— Weighted Least connections, Weighted Round Robin

Zone aware routing
— Default to instances in the same Availability Zone
— Falls back to cross-zone on failure

Discovery

Discovery Service (Redundant instances per zone)
— Simple REST interface
— Cloud apps register with Discovery
Apps send heartbeats every 30 sec to renew lease
— App evicted after 3 missed heartbeats
— Can re-register if the problem was transient
Apps can store custom metadata
— Version number, AMI id, Availability Zone, etc.

Software Round-robin Load Balancer
— Query Discovery for instances of specific application

— Baked into Netflix REST client (JSR311/Jersey based)

AWS Middle-tier ELB would eliminate most use cases ‘

Database Migration

* Why SimpleDB?
— No DBA’s in the cloud, Amazon hosted service
— Work started two years ago, fewer viable options
— Worked with Amazon to speed up and scale SimpleDB

e Alternatives?

— Investigating adding Cassandra and Membase to the mix
— Need several options to match use cases well

e Detailed SimpleDB Advice

— Sid Anand - QConSF Nov 5t — Netflix’ Transition to High
Availability Storage Systems

— Blog - http://practicalcloudcomputing.com/
— Download Paper PDF - http://bit.ly/bhOTLu

Tools and Automation

Developer and Build Tools

— Jira, Eclipse, Hudson, Ivy, Artifactory

— Builds, creates .war file, .rom, bakes AMI and launches
Custom Netflix Application Console

— AWS Features at Enterprise Scale (hide the keys!)
— Auto Scaler Group is unit of deployment to production

Open Source + Support

— Apache, Tomcat, OpenlJDK, CentOS
Monitoring Tools

— Keynote — service monitoring and alerting
— AppDynamics — Developer focus for cloud

— EpicNMS — flexible data collection and plots http://epicnms.com
— Nimsoft NMS — ITOps focus for Datacenter + Cloud alerting

Current Status

WWW Page by Page during Q2/Q3/Q4

Simplest possible page first

— Minimal dependencies

Add pages as dependent services come online
Home page — most complex and highest traffic

Leave low traffic pages for later cleanup

gradual migration from Datacenter pages

Big-Bang Transition

* iPhone Launch (August/Sept)
— No capacity in the datacenter, cloud only
— App Store gates release, not gradual, can’t back out
— Market is huge (existing and new customers)
— Has to work at large scale on day one

 Datacenter Shadow Redirect Technique
— Used to stress back-end and data sources

e SOASTA Cloud Based Load Generation

— Used to stress test APl and end-to-end functionality

Current Work for Cloud Platform

* Drive latency and availability goals
— More Aggressive caching
— Fault and latency robustness
* Logging and monitoring portal/dashboards
— Working to integrate tools and data sources
— Need better observability and automation

* Evaluating a range of NoSQL choices
— Broad set of use cases, no single winner
— Good topic for another talk...

Wrap Up

Next Few Years...

“System of Record” moves to Cloud
— Master copies of data live only in the cloud, with backups etc.
— Cut the datacenter to cloud replication link

International Expansion — Global Clouds
— Rapid deployments to new markets

GPU Clouds optimized for video encoding

Cloud Standardization
— Cloud features and APIs should be a commodity not a differentiator
— Differentiate on scale and quality of service
— Competition also drives cost down
— Higher resilience

— Higher scalability You must be ths tal

— I —L—1—]—1—1—1—

We would prefer to be an insignificant customer in a giant cloud

Remember the Goals

Faster
Scalable
Available
Productive

Track progress against these goals

Takeaway

Netflix is path-finding the use of public AWS
cloud to replace in-house IT for non-trivial
applications with hundreds of developers and
thousands of systems.

http://www.linkedin.com/in/adriancockcroft
@adrianco #netflixcloud
acockcroft@netflix.com

amazon NETELIX
webservices"

