
Riak Core:
Dynamo Building

Blocks
Andy Gross (@argv0)

Basho Technologies
QCon SF 2010

About Me

• Basho Technologies - Riak, Riak Search,
Webmachine, Erlang open source

• Mochi Media - Ad network written in
Erlang

• Apple - distributed compilers, filesystems

• Akamai - large distributed systems, worlds
first CDN

This Talk

• Background and design philosophy

• Overview of Riak Features

• Riak Core Architecture

• Future Directions

Front Matter

• Dynamo (and NoSQL) are nothing new

• Much of Dynamo was invented > 10 years
ago

• Dynamo chooses AP of CAP

• This talk will focus on properties of
Dynamo-inspired systems (Riak, Cassandra,
Voldemort)

Why Now?

• Changing face of web applications

• Explosion of data beyond our means to
store it

• Higher uptime demands

• Cloud computing requires horizontal
scaling

• Velocity, volume, variety of data

Scaling Traditional Web
Architectures

http http httphttp http

app app app

db

Increasing
Cost,

Complexity

$

$$$

When to choose
Dynamo-style systems

• Cost of scaling traditional DBs becomes
prohibitive

• Availability is a primary concern

• You can cope with eventual consistency
(not as scary as it seems)

Eventual Consistency

• The real world is eventually consistent and
works (mostly) fine

• “Eventual” doesn’t mean minutes, days, or
even seconds in non-failure cases

• DNS, HTTP with Expires: header

• How you model the real world matters!

What Is Riak?

• Distributed Key-Value Store, inspired by
Amazon’s Dynamo

• Eventually consistent, horizontally scalable

• Written in Erlang (and some C)

• Novel features (links, MapReduce)

• HTTP and binary interfaces

PUT /riak/qcon/foo HTTP/1.1
Content-Type: text/plain
Content-Length: 3

bar
HTTP/1.1 204 No Content
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.7.2 (participate in the frantic)
Date: Tue, 05 Oct 2010 09:43:52 GMT
Content-Type: text/plain
Content-Length: 0

Basic Usage: PUT

GET /riak/qcon/foo HTTP/1.1

HTTP/1.1 200 OK
X-Riak-Vclock: a85hYGBgzGDKBVIsbBXOTzOYEhnzWBki8uWP8WUBAA==
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.7.2 (participate in the frantic)
Link: </riak/qcon>; rel="up"
Last-Modified: Tue, 05 Oct 2010 09:43:52 GMT
ETag: 1vSkKtrE4Fg8VDkke9aL5J
Date: Tue, 05 Oct 2010 09:46:53 GMT
Content-Type: text/plain
Content-Length: 3

bar

Basic Usage: GET

POST /riak/qcon HTTP/1.1
Content-Type: text/plain
Content-Length: 3

bar
HTTP/1.1 201 Created
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.7.2 (participate in the frantic)
Location: /riak/qcon/NRMNPDGYoW3LPOKmROLqz6o4KO
Date: Tue, 05 Oct 2010 09:48:49 GMT
Content-Type: application/json
Content-Length: 0

Basic Usage: POST

DELETE /riak/qcon/foo HTTP/1.1

HTTP/1.1 204 No Content
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.7.2 (participate in the frantic)
Date: Tue, 05 Oct 2010 09:49:34 GMT
Content-Type: text/html
Content-Length: 0

Basic Usage: DELETE

High-Level Dynamo

• Gossip Protocol: membership, partition
assignment

• Consistent Hashing: division of labor

• Vector clocks: versioning, conflict resolution

• Read Repair: anti-entropy

• Hinted Handoff: failure masking, data
migration

High-Level Dynamo

• Decentralized (no master nodes, no SPOF)

• Homogeneous (all nodes can do anything)

• No reliance on physical time

• No global state

Gossip Protocol

• Handles cluster membership, partition
assignment

• Works just how it sounds:

• Change local state, send to random peer

• When receiving gossip, merge with local
state, send to random peer

• Converges quickly, but not immediately.

Consistent Hashing

• Modulus-based hashing: great until adding/
removing machines causes complete
reshuffle.

• Consistent hashing: optimally minimal
resource reassignment when # buckets
changes

• Any node can calculate replica locations
using gossiped partition map

Consistent Hashing

N,R,W Values

• N = number of replicas to store (on
distinct nodes)

• R = number of replica responses needed
for a successful read (specified per-request)

• W = number of replica responses needed
for a successful write (specified per-
request)

N,R,W Values

N,R,W Values

Hinted Handoff

• Any node can handle data for any logical
partition (virtual node)

• Virtual nodes continually try to reach
“home”

• When machines re-join, data is handed off

• Used for both failure recovery and node
addition/removal

Read Repair

• When reading values, opportunistically
repair stale data

• “Stale” is determined by vector clock
comparisons

• Occurs asynchronously

Adding/Removing
Nodes

• “riak start && riak-admin join”

• Riak scales down to 1 node and up to
hundreds or thousands.

• Developers often run many nodes on a
single laptop

• Data is re-distributed using hinted handoff

Vector Clocks

• Reasoning about time and causality is
fundamentally hard.

• Ask a physicist!

• Integer timestamps an insufficient model of
time - don’t capture causality

• Vector clocks provide a happens-before
relationship between two events

Vector Clocks

• Simple data structure: [(ActorID,Counter)]

• Objects keep a vector clock in metadata,
actors update their entry when making
changes

• ActorID needs to reflect potential
concurrency - early Riak used server names
- too coarse!

Link Walking

• Lightweight, flexible object relationships

• Works like the web

• Structure: (Bucket, Key, Tag)

• http://host/riak/conferences/qcon/talks,_,nosql/

“Fetch the “qcon” object from the
“conferences” bucket and give me all
linked “talk” objects tagged “nosql”

http://localhost/riak/jaoo/talks/
http://localhost/riak/jaoo/talks/

Map/Reduce

• M/R functions can be implemented in
Erlang or Javascript

• Scope: pre-defined set of keys or entire
buckets

• Functions are shipped to the data

• Phases can be arbitrarily chained

Map/Reduce

Commit Hooks

• Similar to triggers in traditional databases

• Pre-commit hooks: Executed
synchronously, can fail updates, modify data

• Post-commit hooks: Executed
asynchronously, used for integration with
other systems

Harvesting A
Framework

• We noticed that Riak code fell into one of
two categories

• Code specific to K/V storage

• “generic” distributed systems code

• So we split Riak into K/V and Core

• Useful outside of Riak

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Riak Core: The Stack

Scale-Aware

Scale-Agnostic

Scale-Agnostic

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

HTTP
Rich semantics

Cacheable
Easy Integration

Protocol Buffers
Fast

Compact

Client Interfaces

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

All front-end client
interfaces implemented
against the Erlang low-

level client API.

Client Implementation

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Requests are modeled
as finite state machines,
each in its own Erlang

process

Modeling Requests

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Vector Clocks
Consistent Hashing

Merkle Trees
Virtual Node

Handoff
Failure Detection

Gossip

Riak Core: The Hard
Stuff

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Request dispatching
Book-keeping

Concurrency and
Bookkeeping

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

disposable, per-partition
actor for access to local

data

node-local abstraction
for storage

Virtual Nodes

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Conform to a common
interface, defined by

clients and virtual nodes

Pluggable,
interchangeable

Storage Backends

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Complexity in the
middle

Riak Core

http protobufs

erlang client

request FSMs

riak core

vnode master

virtual node

storage backend

Simplicity at the edges

Riak Core

Riak Search

Little known fact: A Riak engineer drew this cartoon
The key/value access model doesn’t satisfy all use cases

Riak Search

• Sometimes key-value isn’t enough

• Search data with Lucene query syntax

• Built on Riak Core

• Stores documents in Riak-KV

• New Map/Reduce type: Search Phase

Future Directions

• Analytical/column store?

• Graph Database?

• Continued work on Riak Core

• Make distributed systems experimentation
easier!

Thank You!
@argv0

@basho/team
http://basho.com

http://github.com/basho

http://basho.com
http://basho.com

