
Martin Thompson & Michael Barker

QCon SF 2010

How to do 100K+ TPS at less

than 1ms latency

• Context Setting

• Tips for high performance computing (HPC)

• What is possible on a single thread???

• New pattern for contended HPC

• Q & A

Agenda

• The London Multi-Asset Exchange

• Spin-off from Betfair into retail finance

• Access the wholesale financial markets on equal terms for retail traders

• We aim to build the highest performance financial exchange in the world

Who/What is LMAX?

What is Extreme Transaction Processing (XTP)?

The Betfair Experience

The Internet

v

What is Extreme Transaction Processing (XTP)?

The LMAX Model

The Internet

GBP / USD

Latency

Spread

Risky!

How not to solve this problem

J2EE

Actor

SEDAX

Rails

X

XX

RDBMSX

XX
X

Phasers or Disruptors?

Tips for high performance computing

1. Show good “Mechanical Sympathy”

2. Keep the working set In-Memory

3. Write cache friendly code

4. Write clean compact code

5. Invest in modelling your domain

6. Take the right approach to concurrency

1. Mechanical Sympathy – 1 of 2

Memory

• Latency not significantly changed

• Massive bandwidth increase

• 144GB in a commodity machine

CPUs

• The GHz race is over

• Multi core

• Bigger smarter caches

1. Mechanical Sympathy – 2 of 2

Networks

• Sub 10 microseconds for local hop

• Wide area bandwidth is cheap

• 10GigE is now a commodity

• Multi-cast is getting traction

Storage

• Disk is the new tape! Fast for
sequential access

• SSDs for random threaded access

• PCI-e connected storage

2. Keep the working set In-Memory

Does it feel awkward working with data remote from your address space?

• Keep data and behaviour co-located

• Affords rich interaction at low latency

• Enabled by 64-bit addressing

3. Write cache friendly code

C2 C3C1 C4

L1 L1 L1 L1

L2 L2 L2 L2

L3

C2 C3C1 C4

L1 L1 L1 L1

L2 L2 L2 L2

MC

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Registers <1ns

~4 cycles ~1ns

~10 cycles ~3ns

MC

L3~42 cycles ~15ns

QPI ~20ns

~65ns

4. Write clean compact code

"Any intelligent fool can make things bigger, more complex, and more violent. It takes

a touch of genius -- and a lot of courage -- to move in the opposite direction."

• Hotspot likes small compact methods

• CPU pipelines stall if they cannot predict
branches

• If your code is complex you do not properly
understand the problem domain

• Nothing in the world is truly complex other
than Tax Law

5. Invest in modelling your domain

• Single responsibility – One class one thing, one method one thing, etc.

• Know your data structures and cardinality of relationships

• Let the relationships do the work

Elephant

Wall

SnakeRope

TreeTrunk

Supported By

attachedattached

like a

Model of an elephant based on blind men touching one part each

6. Take the right approach to concurrency

Concurrent programming is about 2 things:

Mutual Exclusion: Protect access to contended resources

Visibility of Changes: Make the result public in the correct order

• Context switch to the kernel

• Can always make progress

• Difficult to get right

• Atomic read-modify-write primitives

• Happen in user space

• Very difficult to get right!

Atomic/CAS InstructionsLocks

What is possible when you get this stuff right?

On a single thread you have ~3 billion instructions per second to play with:

10K+ TPS

• If you don’t do anything too stupid

100K+ TPS

• With well organised clean code and standard libraries

1m+ TPS

• With custom cache friendly collections

• Good performance tests

• Controlled garbage creation

• Very well modelled domain

• BTW writing good performance tests is often harder than the target code!!!

How to address the other non-functional concerns?

• With a very fast business logic thread we need to feed it reliably

> Did we trick you into thinking we can avoid concurrent programming?

Business Logic

Receiver

Network

Un-Marshaller

Replicator

HA / DR Node

Pipelined

Process

Each stage can

have multiple

threads

JournallerFile System Marshaller

Publisher

Network / Archive DB

Concurrent access to Queues – The Issues

Tail
Node Node Node Node Head

Link List backed

Array backed

size

• Hard to limit size

• O(n) access times if not head or tail

• Generates garbage which can be significant

• Cannot resize easily

• Difficult to get *P *C correct

• O(1) access times for any slot and cache friendly

Cache line

HeadTail size

J
o

u
rn

a
ll
e
r

R
e

p
li

c
a

to
r

U
n

-M
a
rs

h
a
ll
e
r

Disruptor

Invoke Stage

Business Logic

M
a
rs

h
a
ll
e
r

long waitFor(n)

Message

:sequence

:buffer

:invoker

Message

:sequence

:object

:buffer

Network

Receiver

103
1

2

3
45

6

7
n

97
1

2

3
45

6

7
n

long waitFor(n)

101 :MIN101 102 97 :MIN

Publisher

Network / Archive DB

Quick Recap

• Most developers have an incorrect view of hardware and what can be
achieved on a single thread

• On modern processors a cache miss is your biggest cost

• Push concurrency into the infrastructure, and make it REALLY fast

• Once you have this, you have the world that OO programmers dream of:

> Single threaded

> All in-memory

> Elegant model

> Testable code

> No infrastructure or integration worries

Wrap up

Q & A

jobs@lmax.com

