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• Context Setting

• Tips for high performance computing (HPC)

• What is possible on a single thread???

• New pattern for contended HPC

• Q & A

Agenda



• The London Multi-Asset Exchange

• Spin-off from Betfair into retail finance

• Access the wholesale financial markets on equal terms for retail traders

• We aim to build the highest performance financial exchange in the world

Who/What is LMAX?



What is Extreme Transaction Processing (XTP)?

The Betfair Experience

The Internet

v



What is Extreme Transaction Processing (XTP)?

The LMAX Model

The Internet

GBP / USD

Latency

Spread

Risky!



How not to solve this problem

J2EE

Actor

SEDAX

Rails

X
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Phasers or Disruptors?



Tips for high performance computing

1. Show good “Mechanical Sympathy”

2. Keep the working set In-Memory

3. Write cache friendly code

4. Write clean compact code

5. Invest in modelling your domain

6. Take the right approach to concurrency



1.  Mechanical Sympathy – 1 of 2

Memory

• Latency not significantly changed

• Massive bandwidth increase

• 144GB in a commodity machine

CPUs

• The GHz race is over

• Multi core

• Bigger smarter caches



1.  Mechanical Sympathy – 2 of 2

Networks

• Sub 10 microseconds for local hop

• Wide area bandwidth is cheap

• 10GigE is now a commodity

• Multi-cast is getting traction

Storage

• Disk is the new tape!  Fast for 
sequential access

• SSDs for random threaded access

• PCI-e connected storage



2.  Keep the working set In-Memory

Does it feel awkward working with data remote from your address space?

• Keep data and behaviour co-located

• Affords rich interaction at low latency

• Enabled by 64-bit addressing



3.  Write cache friendly code
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4.  Write clean compact code

"Any intelligent fool can make things bigger, more complex, and more violent.  It takes 

a touch of genius -- and a lot of courage -- to move in the opposite direction."

• Hotspot likes small compact methods

• CPU pipelines stall if they cannot predict 
branches

• If your code is complex you do not properly 
understand the problem domain

• Nothing in the world is truly complex other 
than Tax Law



5.  Invest in modelling your domain

• Single responsibility – One class one thing, one method one thing, etc.

• Know your data structures and cardinality of relationships

• Let the relationships do the work

Elephant

Wall

SnakeRope

TreeTrunk

Supported By

attachedattached

like a

Model of an elephant based on blind men touching one part each



6.  Take the right approach to concurrency

Concurrent programming is about 2 things:

Mutual Exclusion:  Protect access to contended resources

Visibility of Changes: Make the result public in the correct order

• Context switch to the kernel

• Can always make progress

• Difficult to get right

• Atomic read-modify-write primitives

• Happen in user space

• Very difficult to get right!

Atomic/CAS InstructionsLocks



What is possible when you get this stuff right?

On a single thread you have ~3 billion instructions per second to play with:

10K+ TPS

• If you don’t do anything too stupid

100K+ TPS

• With well organised clean code and standard libraries

1m+ TPS

• With custom cache friendly collections

• Good performance tests

• Controlled garbage creation

• Very well modelled domain

• BTW writing good performance tests is often harder than the target code!!!



How to address the other non-functional concerns?

• With a very fast business logic thread we need to feed it reliably

> Did we trick you into thinking we can avoid concurrent programming?

Business Logic

Receiver

Network

Un-Marshaller

Replicator

HA / DR Node

Pipelined 

Process

Each stage can 

have multiple 

threads

JournallerFile System Marshaller

Publisher

Network / Archive DB



Concurrent access to Queues – The Issues

Tail
Node Node Node Node Head

Link List backed

Array backed

size

• Hard to limit size

• O(n) access times if not head or tail

• Generates garbage which can be significant

• Cannot resize easily

• Difficult to get *P *C correct

• O(1) access times for any slot and cache friendly

Cache line

HeadTail size
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Quick Recap

• Most developers have an incorrect view of hardware and what can be 
achieved on a single thread

• On modern processors a cache miss is your biggest cost

• Push concurrency into the infrastructure, and make it REALLY fast

• Once you have this, you have the world that OO programmers dream of:

> Single threaded

> All in-memory

> Elegant model

> Testable code

> No infrastructure or integration worries



Wrap up

Q & A

jobs@lmax.com


