Being Elastic
Evolving Programming for the Cloud

Randy Shoup
eBay Chief Engineer

QCon San Francisco
November 4, 2010

Cloud is a New Ecosystem

e Resource-Rich e Remote

* [nexpensive e Virtual

e Available e Variable

e Elastic e Ephemeral

e Managed * Metered

The Old and the New

Developers Must Adapt

Benefits are huge
Constraints are real

Adapt to the constraints to get the benefits

Most adaptations encourage otherwise good
development practices (!)

Scaling for the Cloud

 To leverage scalable infrastructure, you need
— Scalable application
— Scalable development practices

— Scalable culture
e Principles and practices discussed widely
(particularly at QCon!)

— Adapting to the Cloud involves a convergence of
Architecture, Agile, DevOps, etc.

Universal Scalability Law

N
1+ a(N 1)+ BN(N —1)

C(N) =

e Formulated by Neil Gunther

http://www.perfdynamics.com/Manifesto/USLscalability.htm|

 Throughput limited by two factors
— Contention (a): bottleneck on shared resource

— Coherency (B): communication and coordination
among multiple nodes

http://www.perfdynamics.com/Manifesto/USLscalability.html

Programming in the Cloud

Parallelism
Layering

Services

State management
Data model

Failure handling
Testing

Parallelism

Think parallel!

— Simple parallel algorithm out-scales
“smarter” non-parallel algorithm

— Exploiting distributed, elastic resources
requires parallelism
q P ‘\' YA

vy,

flickr.com/phbtos/sharif/2423144088

Request processing

— Parallelism through
* Routing requests
» Aggregating services
* Queueing work

— Async |/O and Futures are your friends

Parallelism

e Offline computation

— Parallelism through
 Workload partitioning -
e : 0 KIRL
e Partitioning data and processing (‘ { t A

— E.g., pipelines, MapReduce
g., pipelines, Map vy,
flickr.com/phbtos/sharif/2423144088/

Parallelism

“There are 3 rules to follow when parallelizing
large codes. Unfortunately, no one knows what
these rules are.”

— W. Somerset Maugham and Gary Montry

Layering

o Strictly layered system

— Software layers inside
components

— Between system components

— Cloud makes clean layering
particularly important

e Common code in frameworks
— Configuration
— Instrumentation

— Failure management

Request Management

Service Interface
Service Logic

Data Access: Logical Service Access: Logical

Data Access: Physical | Service Access: Physical

l

<Remote Service>

Configuration

Instrumentation

Layering

“All problems in computer science can be solved
by another level of indirection ... Except for the
problem of too many layers of indirection.”

— David Wheeler

Services

e Decompose system

functionality into services Service A
— Simple ‘

— Single-purpose Application 3 Service B

— Modular
— Stateless -I_) Service C

— Multi-instance

e Compose complex application
behavior from simple elements

Services

The service should be the fundamental unit of ...
e Composition

— Combine simple services into complex systems
 Dependency

— Depend on a service interface, not implementation
e Addressing

— Talk to logical endpoint (URI), not IP:port
* Persistence

— Abstract and isolate persistence behind a service
 Deployment

Services

“Make everything as simple as possible, but not
simpler.”

— Albert Einstein

State Management

e Stateless instances

— Instances are ephemeral nstance | @
nstance

— Local memory / storage is fast, @ 5 —
but transient and inconsistent nstance

— Equivalent to a cache i O

 Durable state in persistent
storage

— (Many implementations)

State Management

“Here today, gone tomorrow.”

— American proverb

Key-Value Data Model

e Distributed key-value stores
— Simple
— Horizontally scalable
— (Many implementations)

* Constrained by design
— Cannot express complex relationships
— Limited or no fixed schema
— Predictable, bounded performance

e Greater burden on application

— Joins, aggregations, sorts, etc.
— Integrity and schema validation

{n:v, niv, niv, ...
{n:v, niv, niv, ...
{n:v, niv, niv, ...

{n:v, n:v, niv, ...

[SO uO A S

Key-Value Data Model

Plan to Shard
— Partition by key

P e

— Parallelize writes for write throughput

Pr S epp
S S e

— Parallelize reads for read throughput

o s e
= B El B
< 2 2 2

Plan to Denormalize
— Optimize for reads
— Precalculate joins, aggregations, sorts

— Use async queue to update

— Learn to tolerate transient
iInconsistency

Failure Handling

e Expect failures and handle them
— e.printStackTrace() does
not count!
e Failure handling means
— Graceful degradation
— Timeouts and retries
— Throttling and back-off

flickr.com/photos/davidwatts1978/3199405401/

e Abstract through frameworks
and policies

Failure Handling

“Hope is not a strategy.”

— Various

Testing

e Test early and often

— Test-driven and Test-first approaches work particularly
well in the cloud

— Automated testing is essential
— Incremental development and deployment

e Test end-to-end
— Much easier to test at load

— More challenging to simulate all combinations and
failure modes (!)

— Mocking and fault injection

Testing

“In the data center, robust code is best practice.
In the cloud, it is essential.”

— Adrian Cockcroft

Operating in the Cloud

DevOps Mindset
Configuration Injection
Instrumentation
Monitoring

Metering

DevOps Mindset

e |n the Cloud, Developers <> Ops

— Everyone will use tools for deployment, monitoring,
etc.

— Everyone will share responsibility for system
 Manageability as an investment

— Management interfaces need as much engineering
discipline as functional interfaces

e Automate, automate, automate
— Repeatable builds and deployments
— Provisioning, scaling, failure management, etc.
— If you do it more than twice, script it

Configuration Injection

 Boot instance from bare minimum package
— Externalize all variability
— Separate code and configuration

e Configuration should drive
— Instance role
— Service and resource dependencies
— Behavior / capabilities
* Inject
— At boot time
— At runtime

flickr.com/photos/andresrueda/2983149263/

Configuration Injection

“I do my work at the same time each day — the
last minute.”

— Unknown

Instrumentation

e Fully instrument all components
— Cannot attach debugger / profiler
— Remotely diagnose, profile, debug

— Avoid “monitoring fatigue”

pr 1 a0
PRESS URE

e Logging is insufficient
gg g 20 LBS PER D INCH 60

— Needs to be automatically
interpretable and actionable

e Use a framework éﬂ

— Make part of your infrastructure

Monitoring

Monitor requests end-to-end

— Trace all requests as they flow
from component to component

Monitor component activity
and performance

— Metrics, metrics, metrics
Understand your typical
system behavior

— Spiky, flat, sinusoidal?

— Know the baseline so you know
what is abnormal

Metering

e Fixed cost -> variable cost
— Processing
— Storage
— Network

e Efficiency matters
— Any savings goes directly to the bottom line
— Any inefficiency is multiplied by many instances (!)

Metering

“We should forget about small efficiencies, say

about 97% of the time: premature optimization
is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%.”

— Donald Knuth

Evolving for the Cloud

“It is not the strongest of the species that
survives, nor the most intelligent that survives. It
is the one that is the most adaptable to change.”

— Charles Darwin

	Being Elastic�Evolving Programming for the Cloud
	Cloud is a New Ecosystem
	The Old and the New
	Developers Must Adapt
	Scaling for the Cloud
	Universal Scalability Law
	Programming in the Cloud
	Parallelism
	Parallelism
	Parallelism
	Layering
	Layering
	Services
	Services
	Services
	State Management
	State Management
	Key-Value Data Model
	Key-Value Data Model
	Failure Handling
	Failure Handling
	Testing
	Testing
	Operating in the Cloud
	DevOps Mindset
	Configuration Injection
	Configuration Injection
	Instrumentation
	Monitoring
	Metering
	Metering
	Evolving for the Cloud

