¢ (4

[~
G AMES

League of Legends: Scaling to
Millions of Ninjas, Yordles, and

Wizards
Bk,

B
Speaker Introduction

e Scott Delap
— Scalability Architect, Riot Games, Inc.
— sdelap@riotgames.com
— @scottdelap!

* Randy Stafford

— Consulting Architect, Coherence Product Dev.
— Formerly Chief Architect, IQNavigator

. <
ua Y\ pirsioe. 4 EJB Design
A0E 2 an) . y » ENTIRPRISI
bt 97 Things Every Roe i Patterns
o oftware Arch ARCHITECTURI
A Wasied .
e 13 — - Letes,
Programmer N Ao T o) S
r X’ i X ! b g
3 - -
= AN 4 — K

Introducing Riot Games

LEAG UL
| EGENDS

B
Introducing Riot Games

Tripled in headcount over the last 12 months

Ranked #47 on the Business Insider Digital
Startup 100

US and Europe Currently

Expanding internationally
— China, Philippines

Agile development
Release every 2 weeks

Bl

B
Introducing Riot Games

Launched in Oct of 2009

MOBA

— Multiplayer
— Online

— Battle

— Arena

Battles happen online in real time
5x5 or 3x3 Matches

Typical game is 30-45m in length
#3 Most Played Online PC Game

— Xfire.com

— Gamespot.com

B
Introducing Riot Games

B
Introducing Riot Games

|LEGEND

Account Login

Username

P Remember Username --LW
S

Don't have an account?
Forgot your ?

Forgot your G

Playing League of Legends is FREE!

-

Menu Animations

LEAGUE‘ e : s 7 Scott D [+ 69055 x 1017347
LEGENDS =+ i c?.’.,—@— T

My Account | Purchase Riot Points
‘ On Sale 85:59:41 Until Sale Ends

Home

; Guerilla Tristana «
i -, | @ ‘

AT ‘
L &

SKINS SALE e :

Guerilla Tristana, Emerald Taric, and Jack of Hearts ‘ On Sale 12:59:41 Until Sale Ends
are available for 50% off until November 8th! —
Unmasked Kayle «

Click here to purchase and unlock this discounted skin A

P «
50% 487
OFF

Blanc Double Bundle cked LeBlanc Bundle Perseus Pantheon ‘ Top Sellers

< \K ¥ » 7 l& T["r?eBDl:cne?ver

,ﬁ (/) < ;‘ /‘,9 4’ ' > 5 Wicked LeBlanc
i \ J

Lux
o o o« B. The Lady of Luminosity
975 3150

Home Champions Bundles Riot Points

Introducing Riot Games

Shaco

Destello

2 -

—— -
,r,v"'f 3
m« /- o

788'/1788
1997330

i
222 108

Grez, Senor Lagarto

Monstruo

Un monstruo de combate CUerpo a Cuerpo con gran
cantidad de Vida. Matar a este enemigo proporciona
un ataque que ralentiza e inflige dano a lo largo del

mpo.

B
Introducing Riot Games

B
2010 Awards

“Our Favorite Free Game” — PC Gamer

NOMINEE

alalanln

GDC Online
2010
nmminnnnn

NnIININN NOMINEE NOMINEE
Best Live Game Best Online Visual Arts
GDC Online GDC Online

mamnnn NOMINEE NOMINEE
‘ Best Online Game Design Best Online Technology
GDC Online GDC Online
2010 2010
M L

B
Critical Acclaim

“‘One hell of a great multiplayer game” - Gamespy
“A satisfying strategy game that's not for the faint of heart” — IGN
‘| can't stop playing League of Legends.” -Kotaku

“One of the most refreshing strategy games in years.” — GameTrailers

NOMINEE WINNER WINNER WINNER
READER’S CHOICE READER’S CHOICE GAMER'S CHOICE
Best Dehut Best Multiplayer Game Best Strategy Game Best PC Game
GAME DEVELOPERS IGN IGN GAMESPY
2009 2009 2009 2009
WINNER NOMINEE WINNER WINNER
GAME OF THE YEAR GAME OF THE YEAR E3
Best MMO RTS Best Strategy Game Best MMO Best Strategy Game
MMOSite GAMETRAILERS NEOGAFF GAMETRAILERS
2009 2009 2009 2009
NOMINEE NOMINEE NOMINEE NOMINEE
Best Online Game Design Online Visual Arts Best New Online Game Best Live Game
GDC Online GDC Online GDC Online GDC Online
2010 2010 2010 2010

A Unique Scale Challenge

Planning for Fuzzy Growth

New concurrency highs regularly
2 million downloads as of June
No Barrier of Entry

— League of Legends is free to download and
play.
— Highly viral growth

Bl

TS
A Unique Scale Challenge

 Game features do not always support
traditional architecture decomposition

— Social elements require uniform access

— QOS is “soft” real time

— Crafting a enjoyable user experience

* | want to be able to invite friends to a game
instantly not 20m later

* Incremental roll out while technically possible
creates negative experiences

Bl

T———
A Quick Architectural Overview

| Client Experience |

PvP.net Game Client

Adobe Air C

Flex DirectX
—

Server Side Stack
Apache Tomcat Game Servers

Spring Game Servers
ActiveMQ Game Servers

Coherence Game Servers

Hibernate

MySQL

B
Today We Are Focusing On...

Client Experience

—

Server Side Stack
Apache Tomcat

Spring

ActiveMQ
Coherence

Hibernate

MySQL

T———
A Quick Architectural Overview

Apache Tomcat | Apache Tomcat | Apache Tomcat

Spring Spring

Coherence Coherence Coherence Coherence

Hibernate Hibernate Hibernate Hibernate

TS
Coherence in a Nutshell

Can be considered a NoSQL solution
1.0 was released in 2001

Depending what your definitions are it is a
key/value or document oriented data store.

Data is stored in caches by key

Bl

TS
Coherence in a Nutshell

Clustering

Caching

Grid computing

Dynamically horizontally scalable

T———
A Quick Architectural Overview

DAO

&

T———
A Quick Architectural Overview

Hibernate

T———
A Quick Architectural Overview

BJA\®,

Coherence

Hibernate

TS
Coherence in Front

Supports atomic operations at the key level

Send the work to the data
— Work is smaller than data
— Work is more easily parallelizable

Root objects /caches essentially define
operation and query scope

Queries becomes distributed merge searches

— Blazing fast with 100s of cores and memory access

Bl

T——
Functional Uses

* Transient platform data
— Matchmaking
— Game Instances
— Game End Statistics

e Caching provides flexibility
— Failover
— Distribution of workload

 Example cache usage - Tomcat control logic

allocating users to game servers “I

Agenda

Simple is Best
Don’t Over Use Your Toolbox

Scaling Best Practices Have Consequences

Monitor Everything
Code a Dynamic System

Bl

Simple is Best

Everyone thinks they have a difficult problem
that needs a difficult solution.

Bl

B
Simple is Best

* Overheard at an engineering meeting...

“There is no way one box can handle the load for
this new feature. We need caching, 4 boxes,
and lots of threads to implement it right!”

Bl

B
Simple is Best

* Complex solutions are hard to get right and
often buggy.

* Has anyone tried the simple approach?
— Modern CPUs are fast

* 3 billion instructions a second

— Memory is fast
— Java is fast

— Not everything needs NIO and the latest open

Bl

source library

B
Simple is Best

e Step 1 —Don’t Over Design
— Write a basic implementation
— Test with real world data

— Assert performance
* This is not the same as premature optimization

— |s it fast enough for today and +6 months?

— Will it be faster in production on a 16 core box

Bl

with lots of memory and a fast network?
— |If not go to step 2

B
Simple is Best

e Step 2 —Rig The Game
— Coordination is hard and expensive.
— Can you partition the algorithm before hand?

— It is easier to divide the inputs of an algorithm and
then parallel process than it is to continually
coordinate while processing

e Concurrency becomes infrastructure
e Algorithm goes back to single threaded

Bl

B
Simple is Best

Thread1 Thread?

~ Coordination

Coordination

Coordination

/@nation

/7

Coordination
A\l V]] niauuvil

/ Coordination

Coordination

Work

L1

B
Simple is Best

Data Data Data Data Data

Thread1 Thread?2

Simple is Best

Thread1

Work Data

Work

Work Data

Work

Work Data

Thread?2

Work

Work DEIE!

Work

Work DEIE!

Work

Agenda

Simple is Best
Don’t Over Use Your Toolbox

Scaling Best Practices Have Consequences

Monitor Everything
Code a Dynamic System

Bl

Don’t Over Use Your
Toolbox

If you have a hammer everything is a nail.

Bl

T
Don’t Over Use Your Toolbox

Coherence caches support write behind
Reduces db load

Uniqueness is enforced by key.

Lets look at an example...

T
Don’t Over Use Your Toolbox

T
Don’t Over Use Your Toolbox

DAO

Coherence

Hibernate

e
Don’t Over Use Your Toolbox

We cache accounts by id

We need to enforce unique user names
Problem: user names aren't our key

Let’'s query the db in our application logic!

Wait a minute isn't there a race condition with
that write behind thing?

Hmmm...

Bl

e
Don’t Over Use Your Toolbox

* What can we do?
— Cache all accounts
— Add a distributed semaphore to handle the race
— Query DB from Coherence storage component
— Add and use a cross-reference cache
— Create a Rube Goldberg machine

T——
Solution — Remove Write Behind

There were many ways to solve our account
unigueness issue.

Many involved custom Coherence additions

Easiest solution: write through when putting
account by id, let DB enforce uniqueness

Account creation is relatively infrequent, so

Bl

write through latency is acceptable

T
Don’t Over Use Your Toolbox

Agenda

Simple is Best
Don’t Over Use Your Toolbox

Scaling Best Practices Have Consequences

Monitor Everything
Code a Dynamic System

Bl

Scaling Best Practices
Have Consequences

Bl

TS
Modern Scaling Technology 101

1. Scaling is hard.

2. Lets get rid of some things so we can do this
easier.

3. What do we get rid of? | can’t decide.

4. Plan B ... instead of telling you what you can’t
do | will tell you what you can.

5. Follow these X rules and everything will be

Bl

fine.

B
Examples

* Map Reduce

* If all problems can be written with a map step and
a reduce step...

* NoSQL

* | am taking away your joins...

* CAP

 Pick Two...

T
Consequences

* Atomic operations often become scoped by
entry values and root objects
* Blog Entry
* Comment
* Comment
* Comment

 What happens with a really popular post with

Bl

300 comments?

B
An Example of a Mismatch

Riot runs multiple games per server
A root object represents the server

As games are allocated child objects are added
to this object

As we’ve grown these child objects have
become more complex

We also run more games per server than at

Bl

launch

TS
Root Objects and Child Objects

Machine

Game Instance

Name Players State

Game Instance

Name Players State

Game Instance

Name Players State

T
Evolution of an Anti-Pattern

A full Machine object has many child objects
Each approached 2-50k in size

As a result the Machine object went from
<20k to >500k in size

Network transfer fast became a bounding
factor

Object serialization became a bounding factor

Bl

B
The Pipe is Full

Machine Machine Machine Machine Machine

Game Instance Game Instance Game Instance Game Instance Game Instance
Game Instance Game Instance Game Instance Game Instance Game Instance
Game Instance Game Instance Game Instance Game Instance Game Instance

B
Do we really have one object?

Machine

Game Game Game

Game Instance Instance Instance Instance

Name Players

State State State

TS
Smaller is better!

TS
Domain Driven Design for the Grid

* DDD is based on domain objects
— Some are Entities (have identifiers)

— Some Entities are Aggregate Roots
 DDD is mute on serialization (impl. detail)
* Coherence based on Named Cache (Map<K, V>)
* Coherence requires serialization
 What should be serialized together?

 What are the consequences? “I

Named Cache Usage Patterns

* Named Cache
per Entity Type

* Named Cache
per Aggregate

Game

Player Owner
Player

Player

Root Type o

Player

* Named Cache
per Object State

T
Usage Patterns and Consequences

* Selected usage pattern has substantial
pervasive impact on application codebase
* Related patterns and refactorings
— Disconnected Domain Model
— Reference By ldentifier
— Replace Field Access with Cache Get

— Replace Collection Access with Cache Query

Bl

— Indexed Queries

Agenda

Simple is Best
Don’t Over Use Your Toolbox

Scaling Best Practices Have Consequences

Monitor Everything
Code a Dynamic System

Bl

Monitor Everything

A picture is worth a thousand words.

Bl

B
Monitor Everything

* 1 box = predictable

* N boxes = organic

— In a large system everything interacts
* Network
* CPU load
* Hard disk failure
* Player behavior

— The trick is understanding the average case and

Bl

when something changes

B
Monitor Everything

* Graph everything.

* Pictures are easier to understand than logs
with millions of operations per day.

* Even with grep you will often not be able to
find many trends.

Bl

B
Monitor Everything

 What happened here?
* Networking issue!

Rl

B
Monitor Everything

 Automate metrics gathering

* Spring performance monitoring interceptor
— Log out call stack on external calls
— Sample internal calls

— Automate reporting

e Isn't that slow?
— Less than 1% overhead.

 Trivial cost vs the benefit

Bl

Monitor Everything

* Data is useless without an easy way to view it.

Top 50 EXTERNAL calls by volume

Service Method Num Calls | A8 Call| % O s | Baseline Factor | %anr | |7

3465105 27 7.3648% 2.6471|-4.5827% 3572459 24 7.5898% 27742

- - - - 3090954 7 6.5695% 2.3612|-3.6516% 3155920 7 6.7049% 2.4507
2408357 0 5.1145% 1.8383(+3.3200% 2281151 0 4.8676% 1.7792

- - - - - 2406357 7 5.1145% 1.8383|+3.3200% 2291151 7 4.8676% 1.7792
2138788 2 4.5458% 1.6339(+0.1456% 2100940 2 4.4635% 1.6315

- ~ - - 2031441 24 4.3176% 1.5519|-4.7465% 2097979 24 4.4572% 1.6282
1552590 0 3.2999% 1.1861|-4.3052% 1596050 0 3.3909% 1.2384

- - - - —— - 1493027 6 3.1733% 1.1406| -4.4092% 1536489 6 3.2643% 1.1832
1358414 20 2.8872% 1.0377|-4.0802% 1393162 20 2.9598% 1.0819

- - 1309035 0 2.7822% 1.0000(0.0000% 1287743 0 2.7358% 1.0000
1106124 23 2.3510% 0.8450| -0.1746% 1090036 22 2.3158% 0.8465

- - - - - 1100421 F 2.3388% 0.8406|+1.4989% 1066536 7 2.2659% 0.8282
1073141 17 2.2809% 0.8198|-4.1639% 1101554 17 2.3403% 0.8554,

- - 1072878 3| 2.2803% 0.8196|-4.1650% 1101286 3 2.3397% 0.8552
1069397 1 2.2728% 0.8169(+0.1457% 1050472 1 2.2318% 0.8157

- - - - - 1069391 12 2.272%% 0.8169|+0.1455% 1050468 12 2.2318% 0.8157,
1069390 0 2.2728% 0.8169|+0.1454% 1050469 0 2.2318% 0.8157,

- - 1058574 2 2.2520% 0.8094| -3.3607% 1078588 2 2.2915% 0.8376

893122 61 1.8983% 0.6823 -2.4315% 900490 59 1.9131% 0.6993

- - - - - 846345 73 1.7988% 0.6465|+1.2110% 822617 68 1.7477% 0.6388
= : | - 776295| 1 1.6499% 0.5930| -4.3052% 798025 1 1.6954% 0.6197

Monitor Everything

* Data is useless without an easy way to view it.
e ..lets grep to research the red item...

Top 50 EXTERNAL calls by volume

Current Import
I Num Calls | A8 B8l | e Cals | Baseline Factor | % iff Num Calls | £ . ot [}

3465105 27| 7.3648% 2.6471-4.5827% 3572459 24 7.5898% 27742
3090954 7| 6.5695% 2.3612{-3.6516% 3155920 7 6.7049% 2.4507
2408357 0 51145% 1.8383(+3.3200% 2291151 0 4.8676% 1.7792
2408357, 7| 5.1145% 1.8383(+3.3200% 2291151 7 4.8676% 1.7792
2138788 2| 4.5458% 1.6339|+0.1456% 2100940 2 4.4635% 1.6315
2031441 24| 43176% 1.5519|-4.7465% 2097979 24 4.4572% 1.6292
1552590 o 32999% 1.1861|-4.3052% 1598050 0 3.3909% 1.2394
1493027 6 3.1733% 1.1406| -4.4092% 1536489 6 3.2643% 1.1932
1358414 20 2.8872% 1.0377|-4.0802% 1393162 20 2.9598% 1.0819
1309035 o 27822% 1.0000| 0.0000% 1287743 0 2.7359% 1.0000
1106124 23| 2.3510% 0.8450|-0.1746% 1090036 22 2.3158% 0.8465
1100421 7| 2.3388% 0.8406/+1.4989% 1066536 7 2.2650% 0.8282
1073141 17| 2.2809% 0.8198|-4.1639% 1101554 17 2.3403% 0.8554
1072878 3| 22803% 0.8196|-4.1650% 1101296 3 2.3397% 0.8552
1069397 1| 22729% 0.8169(+0.1457% 1050472 1 2.2318% 0.8157
1069391 12| 22729% 0.8169(+0.1455% 1050468 12 2.2318% 0.8157,
1069390 of 22729% 0.816+0.1454% 1050469 0 2.2318% 0.8157
1059574 2| 22520% 0.8094(-3.3607% 1078588 2 2.2915% 0.8376
893122 61| 1.8983% 0.6823|-2.4315% 900490 59 1.9131% 0.6993
846345, 73| 1.7988% 0.6465(+1.2110% 822617 68 1.7477% 0.6388
- | 776295, 1| 1.6499% 0.5930|-4.3052% 798025 1 1.6954% 0.6197

B
Monitor Everything

 Automate the next 5 questions
 Why should they be manual?

[0, 100) 542603
[100, 200) 90834
[200, 300) 15576
[300, 400) 3176
[400, 500) 642
[500, 600) 154
[600, 700) 48
[700, 800) 16
[800, 900) 15
[200, 1000) 5
[1000, 1100) 1
[1100, 1200) 1
[1200, 1300) 0
[1300, 1400) 0
[1400, 1500) 0
[1500, 1600) 2
[1600, 1700) 0
[1700, 1800) 6
[1800, 1900) 45
[1900, 2000) 57
[2000,) 113

Agenda

Simple is Best
Don’t Over Use Your Toolbox

Scaling Best Practices Have Consequences

Monitor Everything
Code a Dynamic System

Bl

Code a Dynamic System

We all think we have planned for everything. Often we are
wrong. At this point operational flexibility becomes useful.

Bl

B
Code a Dynamic System

* A large system will change while it is running
— Spikes in Users
— Hardware failures
— New user behavior

* The next release or during a downtime are not
viable strategies for a response

Bl

B
Code a Dynamic System

* Design features so they can be turned off

— Most things can be set to OFF if you plan for the
use case

e Design algorithms that can be adjusted on the
fly

Bl

B
Code a Dynamic System

* Choose technologies that have elastic
properties
— Dynamic cluster recomposition

— Stateless growth patterns

* Not every piece of your stack has to be elastic

— You are only as fast as you slowest point.
However....

— One or two building blocks can be a huge force

multiplier
Bl

B
Code a Dynamic System

* League of Legends caches all relevant
configuration properties.

 Coherence near caches are used to propagate
changes to nodes dynamically.

 |tif preferred that algorithms are written so
they are aware that their variables may
change while running.

— This can be scoped in seconds or minutes

— This can often be done without complexity “l

B
Code a Dynamic System

* Thread pools are dynamically configurable
 Machines can assume new roles on the fly

* Algorithms can dynamically shard based on
volume

Bl

Don’t Build a System
Based on Hope

Certainty is a far better principle to build a business on.

Bl

]
Don’t Build a System Based on Hope

e http://www.quora.com/Is-Cassandra-to-
blame-for-Digg-v4s-technical-failures

 ” Really it comes down to the fact that we
should have load tested better.”

Bl

]
Don’t Build a System Based on Hope

* Load testing is an extremely valuable
development step

* There is no substitute for reality

e Continually refine the model of testing
— Matchmaking
— Game Starts

e Found countless bottlenecks and fixed them

Bl

before production

]
Don’t Build a System Based on Hope

e Able to upgrade stack components with
confidence

— Spring
— Coherence
— ActiveMQ

e |nstant regression analysis

]
Don’t Build a System Based on Hope

* How do we test?
— Started with Jmeter
— Not flexible enough for our needs
— Developed custom load testing solution
— Use EC2 extensively
— Run 1000s of threads per machine

e Easier programming model for simulating users

Bl

e
Don’t Build a System Based on Hope

e Load test using realistic servers both in speed
and quantity.
— Don’t use your desktop
— Scale testing environment has >50 machines

* Gathering load test data is as important as
production data

— Logs are worthless with thousands of simulated
clients

— There will be failures, the question is what %ml

]
Don’t Build a System Based on Hope

* Load tests are tricky

— Is your network reliable
* I'm talking about you EC2...
— Are you being fair?
e Test too light and bad things happen

e Test too hard and you are fixing problems that will
never occur

— Load testing is a partnership between production,

Bl

engineers, and forecasting

Obligatory Plug

http://www.riotgames.com/careers

T——
Join the Riot!

Java Engineers
— Groovy, Grails, Scale, NoSQL Wizards

Operations

Data Warehouse
— Hadoop Ninjas
MySQL DBAs

Obligatory Plug

http://www.riotgames.com/careers

