The Global Netflix Platform

A Large Scale Java oriented PaaS running on AWS

October 24th, 2011
Adrian Cockcroft

@adrianco #netflixcloud
http://www.linkedin.com/in/adriancockcroft

Netflix Inc.

With more than 20 million streaming members in the
United States, Canada and Latin America, Netflix, Inc.
is the world's leading Internet subscription service for

enjoying movies and TV shows.

International Expansion

Netflix, Inc., the leading global Internet movie
subscription service... announced it will expand to the
United Kingdom and Ireland in early 2012.

Source: http://ir.netflix.com N ETELI X

The Global Netflix Platform

Netflix Cloud Migration
Netflix Platform Services and Interfaces

Highly Available and Globally
Distributed Data

Scalability and Performance

Why Use Public Cloud?

Get stuck with wrong conmig
Wai Waie Flle tickets

Ask permission Wait Wait

V=i Things We Don’t Do WWat

Run out of space/power
Plan capacity in advance

Have meetings with IT VU2

Better Business Agility

ol R
NETELIK .
REIE o Netflix could not
Sty T build new
datacenters fast

enough

Capacity growth is accelerating, unpredictable
Product launch spikes - iPhone, Wii, PS3, XBox

Out-Growing Data Center

http://techblog.netflix.com/2011/02/redesigning-netflix-api.html

Netflix APl : Growth in Requests

25

Billions

37x Growth Jan
2010-Jan 2011

Netflix.com is now ~100% Cloud

A few small back end data sources still in progress
All international product is cloud based

USA specific logistics remains in the Datacenter
Working aggressively on billing, PCl compliance on AWS

Netflix Choice was AWS with our
own platform and tools

Unique platform requirements and
extreme scale, agility and flexibility

Leverage AWS Scale
“the biggest public cloud”

AWS investment in features and automation

Use AWS zones and regions for high availability,
scalability and global deployment

o Amazon NETELIX
“¥ webservices"

But isn’t Amazon a competitor?

Many products that compete with Amazon run on AWS
We are a “poster child” for the AWS Architecture

Netflix is one of the biggest AWS customers
Strategy — turn competitors into partners

.-’ﬁa"mazon NETELIX
" webservices"

b

-,
.“
W',

". '
)
o,

Could Netflix use another cloud?

Would be nice, we use three interchangeable CDN Vendors
But no-one else has the scale and features of AWS
You have to be this tall to ride this ride...
Maybe in 2-3 years?

|

" amazon NETELIX
webservices"

We want to use clouds,
we don’t have time to build them

Public cloud for agility and scale
We use electricity too, but don’t want to build our own power station...

AWS because they are big enough to allocate thousands of instances per
hour when we need to

Netflix Deployed on AWS

Caramai Level(3)

Content Logs Play WWW API CS

I\/\I/ailcsjtegrs S3 DRM — Sign-Up Metadata — Inét;rlr;a(\)tll'(zgal
- -) - - -) -
—— —— —— —— —— ———
EC2 EMR Hadoop CDN routing — Search I(D:ce)\éifcig T Déaizggtri]gs
- -) - - -) —
—— —— —— —— —— ———

= sookmarks | [Mote Dranoe | HGstane
- - - -
—— — — — ——
CDNs Inli:Isl:;eers'nze Logging — Ratings Faizg?)lok — CS Analytics
- -) - - —) -~

Amazon Cloud Terminology Reference

See http://aws.amazon.com/ This is not a full list of Amazon Web Service features

AWS — Amazon Web Services (common name for Amazon cloud)
AMI — Amazon Machine Image (archived boot disk, Linux, Windows etc. plus application code)
EC2 — Elastic Compute Cloud
— Range of virtual machine types m1, m2, c1, cc, cg. Varying memory, CPU and disk configurations.
— Instance — a running computer system. Ephemeral, when it is de-allocated nothing is kept.
— Reserved Instances — pre-paid to reduce cost for long term usage
— Availability Zone — datacenter with own power and cooling hosting cloud instances
— Region — group of Availability Zones — US-East, US-West, EU-Eire, Asia-Singapore, Asia-Japan, US-Gov
ASG — Auto Scaling Group (instances booting from the same AMI)
S3 — Simple Storage Service (http access)
EBS — Elastic Block Storage (network disk filesystem can be mounted on an instance)
RDS — Relational Database Service (managed MySQL master and slaves)
SDB — Simple Data Base (hosted http based NoSQL data store)
SQS - Simple Queue Service (http based message queue)
SNS — Simple Notification Service (http and email based topics and messages)
EMR — Elastic Map Reduce (automatically managed Hadoop cluster)
ELB — Elastic Load Balancer
EIP — Elastic IP (stable IP address mapping assigned to instance or ELB)
VPC — Virtual Private Cloud (extension of enterprise datacenter network into cloud)
IAM — Identity and Access Management (fine grain role based security keys)

amazon NETELIX
webservices”

Boot Camp

* One day “Netflix Cloud Training” class
— Has been run 5 times for 20-45 people each time

* Half day of presentations
* Half day hands-on

— Create your own hello world app

— Launch in AWS test account

— Login to your cloud instances

— Find monitoring data on your cloud instances
— Connect to Cassandra and read/write data

Netflix Built a PaaS!

* Neftflix Cloud Systems team (50+ rock-stars :)
— VP Cloud Systems (Yury lzrailevsky)
— Site Reliability Engineering (@jedberg) Hiring++!
— Cloud Performance (Denis Sheahan)
— Database Engineering - Cassandra+wsa (@r39132)
— Platform Engineering — Astyanax (Eran Landau)
— Cloud Tools Engineering — Jenkins (@cquinn)
— Cloud Solutions Team — Monkeys (@atseitlin)
— Security (Jason Chan)
— Architecture (@adrianco)

Netflix Global PaaS

Architecture Features and Overview
Portals and Explorers

Platform Services

Platform APIs

Platform Frameworks

Persistence
Scalability Benchmark

Global PaaS?

Toys are nice, but this is the real thing...

Supports all AWS Availability Zones and Regions
Supports multiple AWS accounts {test, prod, etc.}
Cross Region/Acct Data Replication and Archiving
Internationalized, Localized and GeolP routing
Security is fine grain, dynamic AWS keys
Autoscaling to thousands of instances

Monitoring for millions of metrics

20M+ users USA, Canada, Latin America (UK, Eire)

Instance Architecture

Linux Base AMI (currently Centos 5)

j*i Java (choice of JDK 6 or 7)

frontend,
memcached,
non-java apps

AppDynamics

- appagent Tomcat
Monitoring

Log rotation icati
g Application serv[et, base Healthcheck, status
to S3 GC and thread server, platform, interface servlets. IMX interface
AppDynamics dump logging jars for dependent services ’
machineagent

Epic

Security Architecture

* |nstance Level Security baked into base AMI
— Login via ssh only allowed via portal
— Each app type runs as its own userid app{test|prod}
* AWS Security, Identity and Access Management
— Each app has its own security group (firewall ports)
— Fine grain user roles and resource ACLs
* Key Management

— AWS Keys dynamically provisioned, easy updates
— High grade app key management support

Core Platform Frameworks and APlIs

Instance platform-

: : : Platform-
identity logging-

L10NClient

L10N
Tools

Portals and Explorers

Netflix Application Console (NAC)
— Primary AWS provisioning/config interface

AWS Usage Analyzer
— Breaks down costs by application and resource

SimpleDB Explorer
— Browse domains, items, attributes, values

Cassandra Explorer
— Browse clusters, keyspaces, column families

Base Server Explorer
— Browse service endpoints configuration, perf

€ > C () nactest.netflix.com/application/show/cass_perf_sr

N H I: |_| x Application Console (test) w

B — —_ — -
Home | = Apps 2 Images @ Auto Scaling ,LIL Load Balancers \!‘ Instances [i] EBS == RDS Tasks
v hd v

s

Application Details

é Edit Application @ Delete Application]Jvz-ég Edit Application Security Access

Name: cass_perf_sr
Warning: Punctuation in name prevents use as frontend service.
Type: Web Service
Description: Single region performance test
Owner: Adrian
Email: acockcroft@netflix.com
Create Time: 2011-06-13 14:04:45 PDT
Update Time: 2011-06-13 14:04:45 PDT

Pattern Matches

Auto Scaling:
g@ cass_perf_sr--useastic
C] | cass_perf_sr--useastid
(@] | cass_perf_sr--useastla
Load Balancers:
Security Groups: -
@& cass_perf_sr

Launch Configurations:

Running Instances: Running Instance List

Region:

@ Home

N ETFLI x Application Console (test)

@ Apps u Images (‘!@ Auto Scaling ,LI.L Load Balancers ‘g‘ Instances @ EBS @;1 RDS G Tasks
v v

v

Auto Scaling Group Details

oy @@
@’) Edit Auto Scaling Group ﬁ Delete Auto Scaling Group \i‘m Create new Launch Config . Prepare Rolling Push

@:J:\ Manage Cluster of Sequential ASGs

Name:
Launch Configuration:

Application:

Detail:

Min Instances:
Desired Instances:
Max Instances:
Cool Down:

ASG Health Check Type:

ASG Health Check Grace Period:

Availablility Zones:

AZ Rebalancing:

New Instance Launching:
Created Time:

Load Balancers:

Activities:

cass_perf_sr--useastid
cass_perf_sr--useastid-201106131415
= cass_perf_sr

useastld

4

4

4

10 seconds

EC2 (Replace terminated instances)
600 seconds

[us-east-1d]

Enabled

Enabled

2011-06-13 14:15:29 PDT

At 2011-06-13T21:15:29Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 4. At 2011-06-13T2
response to a difference between desired and actual capacity, increasing the capacity from 0 to 4. : Launching a new EC2 instance:
Successful)

At 2011-06-13T21:15:29Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 4. At 2011-06-13T2
response to a difference between desired and actual capacity, increasing the capacity from 0 to 4. : Launching a new EC2 instance:
Successful)

AWS Usage

for test, carefully omitting any S numbers...

Cost By Resources

som | 1w [1Im | 3m [All | From: Oct 18, 2011 :To: Nov 18, 2011

24, Oct 31. Oct 7. Nov 14. Nov

[[
Jul'11 Oct'11

] I 3

[@ instance [storage [data_transfer [request [rest of resources]

Cassandra Explorer

CAsSANDRA EXPLORER: -

Region:

|Explorer | Admin | Dashboard|

Filter: | | 0 (Refresh)

> ABCASSANDRA
> CASS_ABMR_2
1> CASS_API_MULTIREGION

CASS_API_TEST
1> CASS_BIG_SCALE
> CASS_BOOTSTRAP
1> CASS_BRISK_TEST
1> CASS_BULKPREDICTION
1> CASS_CCS
1> CASS_CDE
> CASS_DMS
> CASS_ECOMM
1> CASS_GENPOP
1> CASS_GPSAPPLICATION_US
1> CASS_MERCH
1> CASS_MRGENPOP
> CASS_MRSUB
> CASS_MRTEST
1> CASS_NCCP_US
CASS_ORESTES
1> CASS_PBS_US
1 CASS_PERF_SUB
> CASS_QAREG_SUBSCRIBER
CASS_RTAL_GPS
4 CASS_SANDBOX
I» CacheContent
I vault2
I AstyanaxUnitTests
1> trackid_Keyspace
I vault
I video_presentations_Keyspace
i IntTest
1> CASS_SOCIAL
> CASS_STREAM_LATAM
1 CASS_STREAM_MR
> CASS_STREAM_REFRESH
1> CASS_SUBSCRIBER
CASS_TEST_JYOTI
1~ CASS_TRACERS
> CASS_TURTLE
~n CAGS VYMCS

T
)
3
™

Cluster: CASS_SANDBOX

Keyspace: CacheContent

StrategyClass org.apache.cassandra.locator.NetworkTopologyStrategy
us-east 3
Column Families: RegionalManifestindex ReportedManifest RegionalManifest

Keyspace: vault2

StrategyClass org.apache.cassandra.locator.NetworkTopologyStrategy
us-east 3
Column Families: mopstore

Keyspace: AstyanaxUnitTests

StrategyClass org.apache.cassandra.locator.SimpleStrategy
replication_factor 3

CompositeKev LonaColumnl users CompositeColumn ClickStream Standard2 Standard1l

Column Families: CompositeCsv ~ TimeUUIDT Counter1

Keyspace: trackid_Keyspace

StrategyClass org.apache.cassandra.locator.NetworkTopologyStrategy
us-east 3
Column Families: tracklds

Keyspace: vault

NETELIK

Cassandra Explorer

CassanDRA ExpPLORER: test-us-east-1

Region: MY CASS_SANDBOX.AstyanaxUnitTests.TimeUUID1 |5 RzlZellsand [P
Key: limit] Column Range |5 ' => Limit: l Execute
key column value timestamp

Key1 2011-11-15T19:21:18.730+0000 0000002a 2011-11-15T19:21:18.830+0000
Key1 2011-11-15T19:21:18.830+0000 00000064 2011-11-15T19:21:18.830+0000
Key1 2011-11-15T19:21:18.831+0000 00000065 2011-11-15T19:21:18.830+0000
Key1 2011-11-15T19:21:18.832+0000 00000066 2011-11-15T19:21:18.830+0000
Key1 2011-11-15T19:21:18.833+0000 00000067 2011-11-15T19:21:18.830+0000
Key1 2011-11-15T19:21:18.834+0000 00000068 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.835+0000 00000069 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.836+0000 00000062 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.837+0000 0000006b 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.838+0000 0000006¢ 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.839+0000 0000006d 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.840+0000 0000006e 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.841+0000 0000006f 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.842+0000 00000070 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.843+0000 00000071 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.844+0000 00000072 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.845+0000 00000073 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.846+0000 00000074 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.847+0000 00000075 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.848+0000 00000076 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.849+0000 00000077 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.850+0000 00000078 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.851+0000 00000079 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.852+0000 0000007a 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.853+0000 0000007b 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.854+0000 0000007c 2011-11-15T19:21:18.831+0000
Key1 2011-11-15T19:21:18.855+0000 0000007d 2011-11-15T19:21:18.831+0000
Kev1 2011-11-15T19:21:18.856+0000 0000007e 2011-11-15T19:21:18.831+0000 :

Error: | Host: | ec2-204-236-213-136.compute-1.amazonaws.com(10.218.23.152)7102 Duration: | 8313 Count: | 200 |
. . J

NETELTX

Platform Services

Discovery — service registry for “applications”
Introspection — Entrypoints

Cryptex — Dynamic security key management

Geo — Geographic IP lookup

Platformservice — Dynamic property configuration
Localization — manage and lookup local translations
Evcache — eccentric volatile (mem)cached
Cassandra — Persistence

Zookeeper - Coordination

Various proxies — access to old datacenter stuff

Introspection - Entrypoints

 REST API for tools, apps, explorers, monkeys...
— E.g. GET /REST/v1/instance/SINSTANCE_ID

* AWS Resources

— Autoscaling Groups, EIP Groups, Instances

* Netflix PaaS Resources
— Discovery Applications, Clusters of ASGs, History

Entrypoints Queries

MongoDB is good for low traffic complex queries against complex objects

Find all active instances. all()

Find all instances associated with a group %(cloudmonkey)

name.

Find all instances associated with a /“cloudmonkeyS/discovery()

discovery group.

Find all auto scale groups with no instances. asg(),-has(INSTANCES;asg())

How many instances are not in an auto count(all(),-info(eval(INSTANCES;asg())))
scale group?

What groups include an instance? *(i-4e108521)

What auto scale groups and elastic load filter(TYPE;asg,elb;*(i-4e108521))
balancers include an instance?

What instance has a given public ip? filter(PUBLIC_IP;174.129.188.{0..255};all())

Metrics Framework

e System and Application
— Collection, Aggregation, Querying and Reporting
— Non-blocking logging, avoids log4j lock contention
— Chukwa ->S3 -> EMR -> Hive
* Performance, Robustness, Monitoring, Analysis
— Tracers, Counters — explicit code instrumentation log
— Real Time Tracers/Counters
— SLA — service level response time percentiles
— Epic (@MonitoredResources) annotated JMX extract
* Latency Monkey Infrastructure
— Inject random delays into service responses

Configuration Management

NetflixConfiguration
— Validation Framework
— Sitewide Properties Explorer

PlatformService
Mapping Service
ZooKeeper (Curator)
Instanceldentity

Interprocess Communication

* Discovery Service registry for “applications”
— “here | am” call every 30s, drop after 3 missed
— “where is everyone” call
— Redundant, distributed, moving to Zookeeper

e NIWS — Netflix Internal Web Service client

— Software Middle Tier Load Balancer
— Failure retry moves to next instance

— Many options for encoding, etc.

Security Key Management

* AKMS
— Dynamic Key Management interface
— Update AWS keys at runtime, no restart
— All keys stored securely, none on disk or in AMI

* Cryptex - Flexible key store
— Low grade keys processed in client
— Medium grade keys processed by Cryptex service
— High grade keys processed by hardware (Ingrian)

AWS Persistence Services

* SimpleDB
— Got us started, migrating to Cassandra now
— NFSDB - Instrumented wrapper library
— Domain and Item sharding (workarounds)
e S3
— Upgraded/Instrumented JetS3t based interface
— Supports multipart upload and large files

— Global S3 endpoint management

Netflix Platform Persistence

Eccentric Volatile Cache — evcache

— Discovery-aware memcached based backend

— Client abstractions for zone aware replication

— Option to write to all zones, fast read from local
Cassandra

— Highly available and scalable (more later...)
MongoDB

— Complex object/query model for small scale use
MySQL

— Hard to scale, legacy and small relational models

Aside: Adrian’s Rant on CAP Theorem

* Instances and Networks will fail
* Network failure = Partition “P” is a given
e Distributed Systems: two choices — CP or AP

e “Vendor claims CA” ''Bullshit detector!!
— Usually they mean available when instances fail

 Master-Slave = Consistent when Partitioned
— You can’t write unless you can see the master

* Quorum = Available when Partitioned
— Writes proceed, conflicts will be patched up later

Why Cassandra?

We value Availability over Consistency — AP
— Cassandra is a Java distributed systems toolkit

We have a building full of Java engineers
— Riak is in Erlang — a blessing and a curse...

We want FOSS + Support
— Voldemort doesn’t have a support model

Writes are intrinsically harder than reads
— Hbase is optimized for reads, Cassandra for writes

We tested Cassandra and it works for us
— Step by step into full production over the last year

Priam — Cassandra Automation

Coming soon to http://github.com/netflix

Netflix Platform Tomcat Code

Zero touch auto-configuration

State management for Cassandra JVM

Token allocation and assignment

Broken node auto-replacement

Full and incremental backup to S3

Restore sequencing from S3

Astyanax

Coming soon to http://github.com/netflix

Cassandra java client
APl abstraction on top of Thrift protocol

“Fixed” Connection Pool abstraction (vs. Hector)

— Round robin with Failover

— Retry-able operations not tied to a connection

— Discovery integration

— Host reconnect (fixed interval or exponential backoff)
— Token aware (in development) to save a network hop

Netflix style configuration (INFLibrary)

Batch mutation: set, put, delete, increment

Simplified use of serializers via method overloading (vs. Hector)
ConnectionPoolMonitor interface for counters and tracers
Composite Column Names replacing deprecated SuperColumns

Initializing Astyanax

// Configuration either set in code or nfastyanax.properties
platform.ListOfComponentsToInit=LOGGING,APPINFO,DISCOVERY
netflix.environment=test
default.astyanax.readConsistency=CL QUORUM
default.astyanax.writeConsistency=CL QUORUM
MyCluster.MyKeyspace.astyanax.servers=127.0.0.1

// Must initialize platform for discovery to work
NFLibraryManager.initLibrary (PlatformManager.class, props, false, true);

NFLibraryManager.initLibrary (NFAstyanaxManager.class, props, true, false);,

// Open a keyspace instance
Keyspace keyspace = KeyspaceFactory.openKeyspace (”"MyCluster”, "MyKeyspace") ;

Astyanax Query Example

Paginate through all columns in a row
ColumnList<String> columns;
int pageize = 10;
try {
RowQuery<String, String> query = keyspace
.prepareQuery(CF_STANDARD1)
.getKey("A")
.setlsPaginating()
.withColumnRange(new RangeBuilder().setMaxSize(pageize).build());

while (!(columns = query.execute().getResult()).isEmpty()) {
for (Column<String> c : columns) {

}
}

} catch (ConnectionException e) {

}

Data Migration to Cassandra

Distributed Key-Value Stores

* Cloud has many key-value data stores

— More complex to keep track of, do backups etc.
— Each store is much simpler to administer @
— Joins take place in java code

* No schema to change, no scheduled downtime

e Latency for typical queries
— Memcached is dominated by network latency <1ms
— Cassandra takes a few milliseconds
— SimpleDB replication and REST auth overheads >10ms

Multi-Regional Data Replication

* IR Framework — Datacenter Item Replicator
— Built in 2009, first step to the cloud
— Oracle to SimpleDB or Cassandra via poll and push
— Return updates to Oracle via SQS message queue

* SimpleDB or S3 to Cassandra

— Data migration tool for global Netflix
* Global SimpleDB and S3 Replication

— Cross region async updates USA to Europe

Transitional Steps

* Bidirectional Replication
— Oracle to SimpleDB
— Queued reverse path using SQS
— Backups remain in Datacenter via Oracle

* New Cloud-Only Data Sources
— Cassandra based
— No replication to Datacenter

— Backups performed in the cloud

Front End Load Balancer

API Proxy E— TS
Load Balancer :

AWS EC2

Component
Services

Oracle

EC2
Internal
DINS

Netflix
Data Center

NETELIX

SimpleDB

Cutting the Umbilical

* Transition Oracle Data Sources to Cassandra
— Offload Datacenter Oracle hardware
— Free up capacity for growth of remaining services
* Transition SimpleDB+Memcached to Cassandra
— Primary data sources that need backup
— Keep simplest small use cases for now
* New challenges

— Backup, restore, archive, business continuity
— Business Intelligence integration

AWS EC2
Front End Load Balancer

API Proxy

Discover

Load Balancer

Component
Services

Cassandra

EC2
=4 |nternal

SimpleDB

High Availability

Cassandra stores 3 local copies, 1 per zone
— Synchronous access, durable, highly available
— Read/Write One fastest, least consistent - “1ms

— Read/Write Quorum 2 of 3, consistent - ~¥3ms

AWS Availability Zones
— Separate buildings

— Separate power etc.
— Fairly close together

NETFLIX

Cassandra Write Data Flows
Single Region, Multiple Availability Zone

Client Writes to any
Cassandra Node
Coordinator Node
replicates to nodes
and Zones

Nodes return ack to
coordinator
Coordinator returns
ack to client

Data written to
internal commit log
disk

Cassandra

*Disks
eZone C

Cassandra

LIN'S
eZone C

Cassandra

eDisks
eZ0ne B

Cassandra

DINS
eZone B

If a node goes offline,
hinted handoff
completes the write
when the node comes
back up.

Requests can choose to
wait for one node, a
guorum, or all nodes to
ack the write

SSTable disk writes and
compactions occur
asynchronously

Data Flows for Multi-Region Writes

Consistency Level = Local Quorum

Client Writes to any If a node or region goes offline, hinted handoff
Cassandra Node completes the write when the node comes back up.
Coordinator node replicates Nightly global compare and repair jobs ensure

to other nodes Zones and everything stays consistent.

regions

Local write acks returned to

coordinator 100+ms latency .

Client gets ack when 2 of 3
local nodes are committed
Data written to internal
commit log disks
When data arrives, remote

. Cassandra Caszandra Cassandra Y ossandra
node replicates data

* Zone C * ZoneB * Zone C

Ack direct to source region o
coordinator aones o
Remote copies written to

commit log disks

Cassandra

Remote Copies

e Cassandra duplicates across AWS regions
— Asynchronous write, replicates at destination
— Doesn’t directly affect local read/write latency

* Global Coverage
— Business agility
— Follow AWS...

* Local Access

— Better latency
— Fault Isolation

Cassandra Backup

* Full Backup P \') P
— Time based snapshot
— SSTable compress -> S3 u\\< Z)u
* Incremental \u
\\

— SSTable write triggers \,)//
compressed copy toS3 ~ ~\
V. .
A

Cassandra Restore

* Full Restore ‘
— Replace previous data

* New Ring from Backup
— New name old data
e Scripted _

— Create new instances
— Parallel load - fast

Cassandra Online Analytics

* Brisk = Hadoop + Cass " cosni |
— Use split Brisk ring

— Size each separately \A |

* Direct Access }/)k)
I 2N

— Hive/Pig/Map-Reduce
— Hdfs as a keyspace uu uu

— Distributed namenode

Cassandra Archive

Appropriate level of paranoia needed...

Archive could be un-readable
— Restore S3 backups weekly from prod to test

Archive could be stolen
— PGP Encrypt archive

AWS East Region could have a problem
— Copy data to AWS West

Production AWS Account could have an issue
— Separate Archive account with no-delete S3 ACL

AWS S3 could have a global problem
— Create an extra copy on a different cloud vendor

Lk wnh e

Extending to Multi-Region

In production last week for UK/Eire support!

Create cluster in EU Take a Boeing 737 on a domestic flight, upgrade it to
Backup US cluster to S3 a 747 by adding more engines and fly it to Europe

) without landing it on the way...
Restore backup in EU

Local repair EU cluster

Global repair/join
100+ms latency 1

Tools and Automation

Developer and Build Tools
— lira, Perforce, Eclipse, Jenkins, lvy, Artifactory
— Builds, creates .war file, .rpm, bakes AMI and launches

Custom Netflix Application Console
— AWS Features at Enterprise Scale (hide the AWS security keys!)
— Auto Scaler Group is unit of deployment to production

Open Source + Support
— Apache, Tomcat, Cassandra, Hadoop, OpenlDK, CentOS
— Datastax support for Cassandra, AWS support for Hadoop via EMR

Monitoring Tools
— Datastax Opscenter for monitoring Cassandra
— AppDynamics — Developer focus for cloud http://appdynamics.com

Developer Migration

 Detailed SQL to NoSQL Transition Advice

— Sid Anand - QConSF Nov 5t" — Netflix’ Transition
to High Availability Storage Systems

— Blog - http://practicalcloudcomputing.com/
— Download Paper PDF - http://bit.ly/bhOTLu

e Mark Atwood, "Guide to NoSQL, redux”
— YouTube http://youtu.be/zAbFRiyT3LU

Cloud Operations

Cassandra Use Cases
Model Driven Architecture
Performance and Scalability

Cassandra Use Cases

e Key by Customer — Cross-region clusters
— Many app specific Cassandra clusters, read-intensive
— Keys+Rows in memory using m2.4xl| Instances

* Key by Customer:Movie — e.g. Viewing History
— Growing fast, write intensive — m1.xl instances
— Keys cached in memory, one cluster per region

e Large scale data logging — lots of writes
— Column data expires after time period
— Distributed counters, one cluster per region

Model Driven Architecture

* Datacenter Practices
— Lots of unique hand-tweaked systems
— Hard to enforce patterns

 Model Driven Cloud Architecture
— Perforce/lvy/lenkins based builds for everything
— Every production instance is a pre-baked AMI
— Every application is managed by an Autoscaler

Every change is a new AMI

Chaos Monkey

amazon
webservices*

Make sure systems are resilient
— Allow any instance to fail without customer impact

Chaos Monkey hours

— Monday-Thursday 9am-3pm random instance kill
Application configuration option

— Apps now have to opt-out from Chaos Monkey

Computers (Datacenter or AWS) randomly die

— Fact of life, but too infrequent to test resiliency

AppDynamics Monitoring of Cassandra — Automatic Discovery

f Request: a4c39b7f-c310-48ba-bca3-56bc7cf86ech _ M x gout(usert)

USER EXPERIENCE EXECUTION TIME TIMESTAMP BUSINESS TRANSACTION REQUEST GUID Archive \"%
.ngVERY_SLOW 4801 ms 04/29/11 03:57:37 PM words a4c39b7f-c310-48ba-bca3-56bc7cfdbect

Request Flow Map 4666 ms (97.2 %) 104 = 8.2 %) B

m p——Custom—31-ms-(0-6-%}

Call Drill Down (Request: a4c39b7f-c310-48ba-bca3-56bc7cf86ect)

= f 58 snapshots
CASSANDRA

Execution Time: 4801 ms. Node JETTY. Timestamp:04/29/11 03:57:28 PM.

SUMMARY
Set as Root Callgraph navigation help Show Filters v &
UL AR Name Time (ms) Extemal Calls Details
HOT SPOTS v =Scr'.-lct - WordsServlet15Serviet - WordsServlet:. doGet 3 ms (self) [0.1% etails
v com.appdynamics.bible.xrefs.cassandra.CassandraHelper:getAllVersesWithWord: 160 0 ms (self) | 0 %
SQL CALLS
' org.apache.cassandra thrift. Cassandra$Client:get_slice:512 198 ms (seff) | 41% Custom View Details
HTTP PARAMS v B HTTPServiet17HTTPServietservice:820 CUSTOM Calls
v B HTTPServiet17HTTPServiet:service:820 Salllme bt EzeemwEh e e
COOKIES)) Qa,
v =JSPBasccrvIcM7JSPBasccr-.'lct:scr-.'lccﬂ 09
USER DATA V=Scr'.'lct - words.jsp111Servlet - words.jsp:_jspService:81 135 ms Bible
java.lang.Object:wait Row key he
ERROR DETAILS)))
java.lang.Objectwait Column family Words
HARDWARE / JVM B iava.lang.Object wait Consistency level QUORUM

2 java.lang.Object:wait
ADDITIONAL DATA

Eliava lang.object:wait Drill Down into Call
Call Drill Down (Request: a4c39b7f-c310-48ba-bca3-56bc7cf86ect)

Execution Time: 104 ms. Node CASSANDRA. Timestamp: 04/29/11 03:57:28 PM.

SUMMARY
Callgraph navigation help Show Filters w | &\
(UL AR Name Time (ms) Extemnal Calls Details
HOT SPOTS Vorg.apachc.cassandra.thrift.CassandraScr'.f\:r:gct_incc 101 ms (seff) [T View Details
v BB org.apache.cassandra.thrift. CassandraServer:multigetSlicelnternal: 273 0 ms (self) | 0%
SQL CALLS)) ~
vorg,apachc.cassandra.thrltt.CassandraScr-.'cr:gotShcoﬂ97 0 ms (self) | 0%
HTTP PARAMS vcxrg.apachc.cassandra.thrift.CassandraScr'.'cr:rcadColumnrarnilmDIZI 0 ms (self) | 0%
v org.apache.cassandra.service.StorageProxy:read: 293 0 ms (self) | 0%
COOKIES . ~
v gl org.apache.cassandra.service.Storage Proxy:fetchRows: 390 0 ms (self) | 0%
USER DATA v g org.apache.cassandra.service.ReadCallback:get: 108 0 ms (self) | 0%
v org.apache.cassandra.utils.SimpleCondition:await: 54 0 ms (self) | 0%

NETELLN

Scalability Testing

* Cloud Based Testing — frictionless, elastic
— Create/destroy any sized cluster in minutes
— Many test scenarios run in parallel

* Test Scenarios
— Internal app specific tests
— Simple “stress” tool provided with Cassandra

* Scale test, keep making the cluster bigger
— Check that tooling and automation works...
— How many ten column row writes/sec can we do?

<DrEvil>ONE MILLION</DrEvil>

Scale-Up Linearity

Client Writes/s by node count — Replication Factor = 3

1200000
1099837

1000000

800000

600000

400000

200000

0 I I I I I I]
0 50 100 150 200 250 300 350

4.5e+86

4e+06

3.5e+86

3e+06

2,5e+86

2e+06

1.5e+86

Read and Hrite Throughput

T
Average Reads 8/s
Average Hrites 3299512/s
Cassandra Reads/s
Cassandra Hrites/s

1e+06 A
560000 -
0 1 1 1 L 1 1 1
168 2680 3600 480 568 660 768
Read and Hrite Response Tines
8,016 T T T T T T T
Average Read Response 0.0080 ——
Average Hrite Response 6.8139 ——
Cassandra Read Response ———
Cassandra Hrite Response ——
0.814 & 1
8.012 b
e.e1 -
8.888 b
8.886 b
0.004 1
0,002 1
0 1 1 1 1 1 1 1
e 168 260 368 460 568 668 7608

N ETELIN

SPUOJASTTTH

NETELLN

Per Node Activity

48 Nodes | 96Nodes | 144Nodes | 288 Nodes

Per Server Writes/s
Mean Server Latency
Mean CPU %Busy
Disk Read

Disk Write

Network Read
Network Write

Node specification — Xen Virtual Images, AWS US East, three zones

10,900 w/s
0.0117 ms
74.4 %
5,600 KB/s
12,800 KB/s
22,460 KB/s
18,600 KB/s

11,460 w/s
0.0134 ms
75.4 %
4,590 KB/s
11,590 KB/s
23,610 KB/s
19,600 KB/s

* (Cassandra 0.8.6, CentOS, SunJDK6
* AWS EC2 m1 Extra Large — Standard price $ 0.68/Hour
15 GB RAM, 4 Cores, 1Gbit network
* 4internal disks (total 1.6TB, striped together, md, XFS)

11,900 w/s
0.0148 ms
72.5 %
4,060 KB/s
10,380 KB/s
21,390 KB/s
17,810 KB/s

11,456 w/s
0.0139 ms
81.5 %
4,280 KB/s
10,080 KB/s
23,640 KB/s
19,770 KB/s

Time is Money

48 nodes 96 nodes 144 nodes 288 nodes
Writes Capacity 174373 w/s 366828 w/s 537172 w/s 1,099,837 w/s
Storage Capacity 12.8 TB 25.6 TB 38.47TB 76.8TB
Nodes Cost/hr $32.64 $65.28 $97.92 $195.84
Test Driver Instances 10 20 30 60
Test Driver Cost/hr $20.00 S40.00 $60.00 $120.00
Cross AZ Traffic 5 TB/hr 10 TB/hr 15 TB/hr 301 TB/hr
Traffic Cost/10min $8.33 $16.66 $25.00 $50.00
Setup Duration 15 minutes 22 minutes 31 minutes 662 minutes
AWS Billed Duration 1hr 1hr 1 hr 2 hr
Total Test Cost $60.97 $121.94 $182.92 $561.68

1 Estimate two thirds of total network traffic
2 Workaround for a tooling bug slowed setup

Takeaway

Netflix has built and deployed a scalable global
Platform as a Service.

Also, benchmarking in the cloud is fast, cheap and
scalable

http://www.linkedin.com/in/adriancockcroft
@adrianco #netflixcloud
acockcroft@netflix.com

