
VP, Engineering

bryan@joyent.com

Bryan Cantrill

And It All Went Horribly
Wrong: Debugging
Production Systems

@bcantrill

Thursday, November 17, 2011

mailto:rod@joyent.com
mailto:rod@joyent.com

In the beginning...

Thursday, November 17, 2011

In the beginning...

Sir Maurice Wilkes, 1913 - 2010

Thursday, November 17, 2011

In the beginning...

“As soon as we started programming,
we found to our surprise that it wasn't
as easy to get programs right as we
had thought. Debugging had to be
discovered. I can remember the exact
instant when I realized that a large
part of my life from then on was going
to be spent in finding mistakes in my
own programs.”

—Sir Maurice Wilkes, 1913 - 2010

Thursday, November 17, 2011

Debugging through the ages

• As systems had more and more demands placed upon
them, we became better at debugging their failures...

• ...but as these systems were replaced (disrupted) by
faster (cheaper) ones, debuggability often regressed

• At the same time, software has been developed at a
higher and higher layer of abstraction — and
accelerated by extensive use of componentization

• The high layers of abstraction have made it easer to get
the system initially working (develop) — but often harder
to understand it when it fails (deploy + operate)

• Production systems are more complicated and less
debuggable!

Thursday, November 17, 2011

So how have we made it this far?

• We have architected to survive component failure

• We have carefully considered state — leaving tiers of
the architecture stateless wherever possible

• Where we have state, we have carefully considered
semantics, moving from ACID to BASE semantics (i.e.,
different CAP trade-offs) to increase availability

• ...and even ACID systems have been made more
reliable by using redundant components

• Clouds (especially unreliable ones) have expanded the
architectural imperative to survive datacenter failure

Thursday, November 17, 2011

Do we still need to care about failure?

• Software engineers should not be fooled by the rise of
the putatively reliable distributed system; single
component failure still has significant cost:

• Economic cost: the system has fewer available resources
with the component in a failed state

• Run-time cost: system reconstruction or recovery often
induces additional work that can degrade performance

• Most dangerously, single component failure puts the
system in a more vulnerable mode whereby further
failure becomes more likely

• This is cascading failure — and it is what induces failure
in mature, reliable systems

Thursday, November 17, 2011

Disaster Porn I

Thursday, November 17, 2011

Wait, it gets worse

• This assumes that the failure is fail-stop — a failed drive,
a panicked kernel, a seg fault, an uncaught exception

• If the failure is transient or byzantine, single component
failure can alone induce system failure

• Monitoring attempts to get at this by establishing rich
liveness criteria for the system — and allowing the
operator to turn transient failure into fatal failure...

• ...but if monitoring becomes too sophisticated or
invasive, it risks becoming so complicated as to
compound failure

Thursday, November 17, 2011

Disaster Porn II

Thursday, November 17, 2011

Debugging in the modern era

• Failure — even of a single component — erodes the
overall reliability of the system

• When single components fail, we must understand why
(that is, we must debug them), and we must fix them

• We must be able to understand both fatal (fail-stop)
failures and (especially) transient failures

• We must be able to diagnose these in production

Thursday, November 17, 2011

Debugging fatal component failure

• When a software component fails fatally (e.g., due to
dereferencing invalid memory or a program-induced
abort) its state is static and invalid

• By saving this state (e.g., DRAM) to stable storage, the
component can be debugged postmortem

• One starts with the invalid state and proceeds
backwards to find the transition from a valid state to an
invalid one

• This technique is so old, that the term for this state
dates from the dawn of the computing age: a core dump

Thursday, November 17, 2011

Postmortem advantages

• There is no run-time system overhead — cost is only
induced when the software has fatally failed, and even
then it is only the cost of writing state to stable storage

• Once its state is saved for debugging, there is nothing
else to learn from the componentʼs failure in situ; it can
be safely restarted, minimizing downtime without
sacrificing debuggability

• Debugging of the code dump can occur asynchronously,
in parallel, and arbitrarily distant in the future

• Tooling can be made extraordinarily rich, as it need not
exist on the system of failure

Thursday, November 17, 2011

Disaster Porn III

Thursday, November 17, 2011

Postmortem challenges

• Must have the mechanism for saving state on failure

• Must record sufficient state — which must include
program text as well as program data

• Must have sufficient state present in DRAM to allow for
debugging (correctly formed stacks are a must, as is the
symbol table; type information is invaluable)

• Must manage state such that storage is not overrun by a
repeatedly pathological system

• These challenges are real but surmountable — and
several open source systems have met them...

Thursday, November 17, 2011

Postmortem debugging: MDB

• For example, MDB is the debugger built into the open
source illumos operating system (a Solaris derivative)

• MDB is modular, with a plug-in architecture that allows
for components to deliver custom debugger support

• Plug-ins (“dmods”) can easily build on one another to
deliver powerful postmortem analysis tools, e.g.:

• ::stacks coalesces threads based on stack trace, with
optional filtering by module, caller, etc.

• ::findleaks performs postmortem garbage collection on
a core dump to find memory leaks in native code

Thursday, November 17, 2011

Postmortem debugging

• Postmortem debugging is well advanced for native code
— but much less developed for dynamic environments
like Java, Python, Ruby, JavaScript, Erlang, etc.

• Of these, only Java has made a serious attempt at
postmortem debugging via the jdb(1) tool found in
HotSpot VM — but it remains VM specific

• If/as dynamic environments are used for infrastructural
software components, it is critical that they support
postmortem debugging as a first-class operation!

• In particular, at Joyent, weʼre building many such
components in node.js...

Thursday, November 17, 2011

Aside: node.js

• node.js is a JavaScript-based framework (based on
Googleʼs V8) for building event-oriented servers:

 var http = require(‘http’);

 http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
 }).listen(8124, "127.0.0.1");

 console.log(‘Server running at http://127.0.0.1:8124!’);

• node.js makes it very easy to build a reliable, event-
oriented networking services

Thursday, November 17, 2011

http://127.0.0.1:8124
http://127.0.0.1:8124

Postmortem debugging: node.js

• Debugging a dynamic environment requires a high
degree of VM specificity in the debugger…

• ...but we can leverage MDBʼs module-oriented nature to
do this somewhat cleanly with a disjoint V8 module

• Joyentʼs Dave Pacheco has built MDB dmods to be able
to symbolically dump JavaScript stacks and arguments
from an OS core dump:

• ::jsstack prints out a JavaScript stack trace

• ::jsprint prints out a JavaScript heap object from its C++
(V8) handle

• Details:
 http://dtrace.org/blogs/dap/2011/10/31/nodejs-v8-postmortem-debugging/

Thursday, November 17, 2011

http://dtrace.org/blogs/dap/2011/10/31/nodejs-v8-postmortem-debugging/
http://dtrace.org/blogs/dap/2011/10/31/nodejs-v8-postmortem-debugging/

Postmortem debugging: node.js

• node.js postmortem debugging is still nascent; thereʼs
much more to do here

• For example, need a way to induce an abort(3C) from
JavaScript to allow program-induced core dumps…

• ...but itʼs still incredibly useful on gcore(1)-generated
core dumps

• Weʼve already used it to nail a bug that was seen
exactly twice over the course of the past year — and
only in production!

Thursday, November 17, 2011

Debugging transient component failure

• Despite its violence, fatal component failure can be dealt
with architecturally and (given proper postmortem
debugging support) be root-caused from a single failure

• Non-fatal component failure is much more difficult to
compensate for — and much more difficult to debug!

• State is dynamic and valid — itʼs hard to know where to
start, and the system is still moving!

• When non-fatal pathologies cascade, it is difficult to sort
symptom from cause — you are physician, not scientist

• This is Leventhalʼs Conundrum: given the hurricane,
where is the butterfly?

Thursday, November 17, 2011

Disaster Porn IV

Thursday, November 17, 2011

DTrace

• Facility for dynamic instrumentation of production
systems originally developed circa 2003 for Solaris 10

• Open sourced (along with the rest of Solaris) in 2005;
subsequently ported to many other systems (MacOS X,
FreeBSD, NetBSD, QNX, nascent Linux port)

• Support for arbitrary actions, arbitrary predicates, in
situ data aggregation, statically-defined instrumentation

• Designed for safe, ad hoc use in production: concise
answers to arbitrary questions

• Early on in DTrace development, it became clear that
the most significant non-fatal pathologies were high in
the stack of abstraction...

Thursday, November 17, 2011

DTrace in dynamic environments

• DTrace instruments the system holistically, which is to
say, from the kernel, which poses a challenge for
interpreted environments

• User-level statically defined tracing (USDT) providers
describe semantically relevant points of instrumentation

• Some interpreted environments e.g., Ruby, Python,
PHP, Erlang) have added USDT providers that
instrument the interpreter itself

• This approach is very fine-grained (e.g., every function
call) and doesnʼt work in JITʼd environments

• We decided to take a different tack for Node

Thursday, November 17, 2011

DTrace for node.js

• Given the nature of the paths that we wanted to
instrument, we introduced a function into JavaScript that
Node can call to get into USDT-instrumented C++

• Introduces disabled probe effect: calling from JavaScript
into C++ costs even when probes are not enabled

• Use USDT is-enabled probes to minimize disabled
probe effect once in C++

• If (and only if) the probe is enabled, prepare a structure
for the kernel that allows for translation into a structure
that is familiar to node programmers

Thursday, November 17, 2011

DTrace in other environments

• This technique has been generalized by Chris Andrews
in his node-dtrace-provider npm module:

 https://github.com/chrisa/node-dtrace-provider

• Chris has also done this for Ruby (ruby-dtrace) and Perl
(Devel::DTrace::Provider)

• Neither technique addresses the problem of associating
in-kernel events with their user-level (dynamic) context

Thursday, November 17, 2011

https://github.com/chrisa/node-dtrace-provider
https://github.com/chrisa/node-dtrace-provider

Extending DTrace into the VMs

• To allow DTrace to meaningfully understand VM state
from probe context, we introduced the notion of a helper
— programmatic logic that is attached to the VM itself

• For the stack helper, a VM defines — in D — the logic to
get from frame pointers to a string that names the frame

• Must run in the kernel, in probe context — brutally hard
to program

• This was done for Java initially, but has also been done
for Python by John Levon and node.js by Dave Pacheco

Thursday, November 17, 2011

Your DTrace fell into my MDB!

• DTrace data can be recorded to a ring buffer and
recovered postmortem after system failure via MDB

• Conversely, DTrace can be used to turn transient failure
into fatal failure via its raise() and panic() actions

• DTrace can also be used to stop() a process, which can
then be gcore(1)ʼd and prun(1)ʼd

• Allows one to get a precisely defined static snapshot of
an otherwise dynamic problem

• More generally, using postmortem techniques together
with dynamic instrumentation gives one much more
latitude in attacking either variant of system pathology!

Thursday, November 17, 2011

Thank you!

• Dave Pacheco (@dapsays) for node.js/V8 postmortem
debugging work, the V8 ustack helper and his excellent
ACM Queue article on postmortem debugging:
 http://queue.acm.org/detail.cfm?id=2039361

• Chris Andrews (@chrisandrews) for libusdt and its
offspring: node-dtrace-provider, ruby-dtrace and perl-
dtrace

• John Levon (@johnlevon) for the Python ustack helper

• Scott Fritchie (@slfritchie) for his recent work on Erlang
support for DTrace

• Adam Leventhal (@ahl) for his conundrum

Thursday, November 17, 2011

http://queue.acm.org/detail.cfm?id=2039361
http://queue.acm.org/detail.cfm?id=2039361

