Technical Debt

Why you should care

Felipe Rubim

Architect and Team Lead at Ci&T
frubim@ciandt.com

@frubim

www.ciandt.com }

8
7
6
5
4
3
2
1
0
1

/

o $ \ S S 0 N M N
&S o ﬁ?“ q§ » v\ n§\ ﬁ§\ q}\r\

v v

Shows annwal change in Brazilian 6DP, in percent, from 2000 to 2015, according te the IMF World Economic Outlook

Database for April 2010, Note: estimates start after 2008, Sowrce: Iaternational Monetary Fund

Oh, no! Another
session about

technical
debt?!?

}Audience survey

1. Developers or Architects?

2. Product Owners/Project Managers?

3. Involved with Agile projects?

} Different perspectives on technical debt

1. Domain knowledge — ~Sprint 3: “Now that we know
more about this product, we should do something about that
code we shipped”

2. Prudent design decisions — Sprint 1: “Let’s use this

framework now and adapt to a better framework on the
next sprints”

3. Sacrifice of good software development @

practices — “No time for refactoring. We will deal with
this later”

Face the brutal facts:

It will happen!

Story Points

28

21

14

M Velocity

How is your P.O.
here?

6 7 8 g 10 M1

what the hell is happening with this project?!?

which option would you go for?

1. the easy and quick way, but the code and
solution doesn’t seem quite proper...

Future looks dark...

2. a proper design and implementation
along with refactoring, but it will take
longer to ship.

No clouds ahead!

reaIIy, really?

(4.
- /’
4

|

the metaphor

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber

Alistair Cockburn Ron Jeffries Jeff Sutherland
‘ Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

the metaphor...

* every time you choose the first option (the
“dark side one”) you create debt (like a
financial debt)

— if it is a debt, it incurs interest
e you may pay only the interest

e or you may pay down the principal, reducing
the interest in the future

“Technical debt is
everything that
makes your code
harder to change.’

4

(Tom Poppendiek -
Lean Software

1
<

Development)

such as....

Not the right
design choices

duplicated code
lack of tests
“workarounds”

Unnecessary
complexity

interest?!?

bugs

extra effort
slower velocity
milestone delays

(More)
Relentless
Pressure

Diminished Take
Development Technical
Team Velocity Debt

Fail to Pay
Technical Back
Debt Accrues) Technical
Debt

http://theagileexecutive.com/category/technical-debt/

“Every minute spent on not-quite-right code counts as
interest on that debt. Entire engineering organizations
can be brought to a stand-still under the debt load of
an unconsolidated implementation...”

(Ward Cunningham, 1992)

why you should care?

interest?!?

bugs

extra effort
slower velocity
delays

a little context

}Ci&T

Nearshore Software Development Outsourcing company
HQ in Brazil w/ offices in the US, Japan, Europe & China

Global Delivery Centers in Brazil, Argentina and China
Number of developers: 1,100+
100% agile projects

www.ciandt.com /

} What do we deal with

» Different platforms/technologies/
frameworks

* New developers (different levels)
* New customers
* Aggressive timelines

* One Production System across the
organization

www.ciandt.com /

some sad stories

(and fortunately other very happy ones!)

}do you remember this chart?

4 M Velocity

21

14

Story Points

what the hell is happening with this project?!?

it is a true project... ®

* Aggressive timeline to ship the product
— prudent technical debt (“let’s fix it later!”)
— yes! We met the milestone! ©
e But.... a new “critical” milestone was set...
— reckless technical debt

— things got more difficult (extra effort, extra bugs,
frustrated team, unhappy customer...)

— two sprints spent on refactoring, almost no new
functionality delivered...

— we didn’t meet the second milestone... ®
— a long time to recover credibility.

Design Stamina Hypothesis
(by Martin Fowler @ Agile Brazil 2010)

good design

cumulative
functionality

no design

...but up here there's no
useful trade-off

---design payoff line

down here it may be worth
trading off design quality
for time to market...

time

http://www.martinfowler.com/bliki/DesignStaminaHypothesis.html

let’s look another example...

- almost 40% of B Regression
the total sprint ::?s effort
capacit

i ¢ M Bugs found

by the PO

45

and quality has
became an
issue...

what a hell is happening with this project?!?

lack of automated tests and continuous
integration!

e complex billing system for an insurance company
— several integrations with legacy systems

— automated tests were not easy to be created (and kept working
later!) = not prioritized

— Product Owner wouldn’t accept to spend sprint capacity with
what he saw as “no value”

e after some time (and PO not so happy) team was able to

create a minimal test suite (one entire sprint spent on
that!)

— keep this testing code up and running had become part of the
definition of done (as it should have been since day 0)

— in the following sprint, regression tests effort dropped half as
well as the bugs found by the PO! ©

a good reference now!

* alarge construction
company

18 months project

* High business
complexity

e company board as the
main stakeholders
(even PO)

* Ci&T team: 12 people
* monthly shipping

technical debt under control!

» code standards / design / code reviews /
frequent refactoring

— cost to add new features is almost the same since
sprint 3

* continuous integration / automated tests

— daily builds deployed on customer environment

— completely automated deploy process

how to pay the debt?

High
Return

2 — evaluate and prioritize

3 —do not

accumulate

continuous integration

TDD

code reviews

Refactoring (including reflecting your
new knowledge about business domain)

Review your design decisons and
refactor to reflect them

4 — pay

And then add it to your software
development process as a technical
debt reduction framework

Build failure on violation
¢ | oftechnical debt criteria
T <1 (e.g. overall level of debt)

= Event Driven Agile Process_) = e.g.: part of

| Continuous Integration,
Definition of done,
Daily reviews
I=Input=(Requirements) Retrospectives,

C=Control Unit= (‘Stop the line” & convene a team meeting)
O=0utput={Code Increment in the build)

Legend:

http://theagileexecutive.com/category/technical-debt/

18

16

14

12

10

Measure it

Total Technical Debt Created

4 5 6 7 8

Sprints

=—Total Technical
Debt Created

18

16

14

12

10

Measure it

/

/

6

Sprints

—Total Technical
Debt Created

=—Total Technical
Debt "Burned"

18

16

14

12

10

Measure and try and correlate it

% —Total Technical Debt

/ / Created

/ / —Total Technical Debt
¢ / "Burned"
Total Value
Activation

Sprints

and how about the product
owner?

(because it seems he is somehow
important, doesn’t it?)

you may see him as the bad guy...

»pushing the team extremely hard

but he is the one who will have to pay
for the debt eventually!

it is all about communication and
transparency

 The product owner — usually - does not know
what is refactoring, code review, TDD, etc

 He/she needs to know what is the size of the

debt and make conscious decisions about
when and how to pay it

Technical Debt — To summarize:

* |t's expensive to fix, but much more expensive
to ignore

e Stick it to everyone’s mind, from developers,
managers to P.Os. The metaphor is fantastic
to any level in the organization

e Establish a technical debt reduction
framework — Measure, correlate and act

Thanks!

Felipe Rubim
™ frubim@ciandt.com

F frubim

Sites

references

http://www.controlchaos.com/
http://www.mountaingoatsoftware.com/scrum
http://jeffsutherland.com/scrum/
http://www.scrumalliance.org/articles
http://www.agilechronicles.com/

Books

Agile Project Management with Scrum - by Ken
Schwaber

Lean Software Development: An Agile Toolkit - By
Mary Poppendieck, Tom Poppendieck

Agile and Iterative Development: A Manager's
Guide - By Craig Larman

Agile Software Development - by Alistair Cockburn

Articles

CMMI® or Agile: Why Not Embrace Both! — by Hillel
Glazer, Jeff Dalton, David Anderson, Mike Konrad
and Sandy Shrum

Practical Roadmap To Great Scrum - Jeff
Sutherland, Ph.D., October 20, 2009

Scrum and CMMI - Going from Good to Great,
Carsten Ruseng Jakobsen, Jeff Sutherland, Ph.D.

