Hi

PP rrry
%

L7
Gisy

T — .—4’;’:“

Z

I

APL

APL

ldeas

Precedence rules
Array oriented

Concise

Functions

Interactive environment

10+2%x4 + 1 ?

10+2%x4+1 #21

10 +(2 x(4 + 1)) = 1

10+2%x4+1 =1

1+4=5
2+5=7
3+6=9

123+456=579

Concise

« Symbols!
» Composition

Symbols!

Bonus Feature!
-Language Bar-

' Language Bar EM

] FLEEEl el 2] [TtfrEM ERl<PRER] VaRF [tElRlpl [elle-] N [Elelelels] [FFLI] [DOEs]s] [¢fa[-]ulal[e]

In case of “Symbol Crisis”

-
° Language Bar J

+|-|x|x|=(e|Blo|! 2| |I[|L|c|T|2| =¢$<>25|

In case of “Symbol Crisis”

° Language Bar |
B«r =|+|%|®Hlo|!|? HITIL[L]r |- =¢5<>24
> i

4 N

@) Minus Sign (-)
Keyboard: -

Monadic: Negate

ot 8- |
3 2 5.570

Dyadic: Minus

379 -5
2 2 &

Composition

'.[] O0E 2|5 |ola~|walv|&

A)

E) Jot (o)

Keyboard: Control+J

Operator: Composed With / Outer Product

(#x20.5) 1 2 3 45 6
1 1.4%1% 1.732 2 2.236 2.449

1 2 30.x4 5 6
4 5 6
8 10 12
12 15 18

[#[.]-] DoEle]s] [¢]a]+]w]x]v]&

N\ :

) Inner Product (.)

Keyboard:
Operator: Inner Product / Outer Product

1 2 3+.x4 5 6

32

1 2 30.x4% 5 6
4 5 6
8 10 12

12 15 18

123°.x450

123°.x450

4 5 6
8 10 | 12
12 | 15 | 18

123°.x450

4 5 6
8 10 | 12
12 | 15 | 18

123°.+45606

123°.+45606

123°.,456

123°.,456

1,4 1,5

123°.,456

1,4 1,5 1,6

123°.,4560

1,4 1,5 1,6

2,4 2,5 2,6

123°.,456
1,4 1,5 1,6
2,4 2,5 2,6

3,4

123°.,456
1,4 1,5 1,6
2,4 2,5 2,6

3,4 3,5

123°.,456
1,4 1,5 1,6
2,4 2,5 2,6

34 3,5 3,6

123°.,456

1,4 1,5 1,6
2,4 | 2,5 | 2,6
3,4 | 3,5 | 3,6

123+x4560

123+.x4560

|+
=
o0

123+x4560

32

Anonymous functions

10 + 5

2=10{a + o} 5

14 =10 {0+(8%(0+a))} 5

Assignment

DividedBy « {0 +)

From

OneHop<«Flights
x50 swom
LAX 0 1 0 0

1 0 1 0

0 1 0 0

From

TwoHops«<—OneHop +.x OneHop
x| s san | omc
LAX 1 0 1 0

0 2 0 0

1 0 1 0

From

ThreeHops<—OneHop +.x TwoHops
x50 swom
LAX 0 2 0 0

2 0 2 0

0 2 0 0

From

AllTrips<—OneHop + TwoHops + ThreeHops
x50 swom
LAX 1 3 1 0

3 2 3 0

1 3 1 0

TAE

<t
-
P
n
U
 —
.
<}
=
)
C
=
m
{
~
-
*
-+
wl
©
O
@
2

A

) Logical And (a)

Keyboard: Control+0

Dyadic: Logical And / Lowest Common Multiple

0101 A0011
0O 001

15127 A 35 14%0
105 1 %0

V]

>t
<t
-
—
n
u
 —
.
<}
—
|rm
C
2
m
{
~
-
-
A
-l
0
-e-
@
&

) Logical Or (v)

Keyboard: Control+9

Dyadic: Logical Or / Greatest Common Divisor

0O101v0011
0111

15127 v3514%0
5127

V.A

From

TwoHops <« OneHop +.x OneHop
x50 swom
LAX 1 0 1 0

0 2 0 0

1 0 1 0

From

TwoHops < OneHop V.A OneHop
ux so | sw | omc
LAX 1 0 1 0

0 1 0 0

1 0 1 0

From

ThreeHops<—OneHop V. A TwoHops
wx so s o
LAX 0 1 0 0

1 0 1 0

0 1 0 0

From

AllTrips<—OneHop V TwoHops V ThreeHops
wx so s o
LAX 1 1 1 0

1 1 1 0

1 1 1 0

ThreeHops«<—OneHop V OneHop V.A TwoHops
NextHops«PrevHops V PrevHops V.A ThisHops

NextHops «— PrevHops {a. V o V.A o} ThisHops

.
3) DieresisStar (%)

Keyboard: Control+Shift+P
Operator: Power

(¢%1) 2 2 2 2p0a A split once.
AB CD
EF GH

IJ KL
MN OP

(4%2) 2 2 2 2p0a A split twice.
CD EF GH
KL MN OP

(4%¥3) 2 2 2 2p0a A split thrice
AB CD EF GH IJ KL MN OP

f+«(320+)0(x01.8) A Fahrenheit from Celsius
f 7273 40 0 100
“459.4% 40 32 212

c+~f*x"1 8 Inverse: Celsijus from Fahrenheit
c 459.% 40 32 212
273 40 0 100

ThreeHops«<—OneHop V OneHop V.A TwoHops

NextHops<PrevHops V PrevHops V.A ThisHops

NextHops < PrevHops {a. V o V.A o} ThisHops
AllTrips < OneHop ({a V a V.A o} *3) OneHop
AllTrips < OneHop ({a V a V.A o} ¥ =) OneHop

AllTripsFor < {o ({o V a V. A o} ¥ =) o}

AllTripsFor < {o ({o V a V. A o} ¥) o}

Or —V

ConnectedTo «— V. A

UntiINoChange < {a ao * = o}

AppliedTo <« {0 ao o}

AllTripsFor<—({a. Or a ConnectedTo w} UntiINoChange) AppliedTo

AllTripsFor Flights

What | covered

Precedence rules
Array oriented

Concise

Functions

Interactive environment

Things you didn’t see

Memory allocation
For loops
A source file

Types

Joel@JoelHough.com

The old guy with no hat ...

Morten Kromberg, CTO of Dyalog Ltd.
— Dyalog is the leader of the [still] emerging APL Market ©
— Basingstoke (UK) + Canada, DK, France, USA

1 year Z80, 1 year Commodore BASIC, 33 yrs APL

— IBM 5100 APL, SHARP APL, IBM VSAPL and APLSV,

DEC APL/SF, MIPS APL (Prime), Data General APL,
IBM APL2, APL*PLUS/PC, APL+Win, and now Dyalog APL

Wrote at least one program that | understood in each of:
— 6502 and Z80 Machine code, JCL
— Simula, Pascal, COBOL, C, C#, Java

... (Plus one program in Prolog)

CTO of Adaytum, Bl “startup” based on APL
— Sold to Cognos in 2000 for S160M

Interactive Demo

A Day in the Life of a Domain Expert

— Domain: History

e Build a DSL for Playing with Tables

* Do something that might be hard in SQL

[‘_7] < v1891.xls [Compatibility Mode] - Microsoft Excel o =
| __ H Pagep out For@ms D@a Rﬁw View Ad@ns ' - 6@ o @ R
—j ;UI Page reak Prewew e By \ ; l T New Window ESpnt % 1:|
1=1_| Custom Views % = Ly = Arrange All " Hide ! —
orkbook Vie Show Zoom Window Macros
Al v Jf« | Region v
A B | C D E F G H | J |<
1 |Region| Farm | Person |Name1 Name2 Name3 SeRole Status YOB |~
2 1 Kreds 1 Stremmen Teller: Leerer M. Sandvold
3 1 1 11 @ren
4 1 1 1 Simen Simensen Stremsgren M |Selv Hovedperson Enkemand| 1822
5 1 1 2 |Simen Simensen Stremsgren M |Sen Ugift 1865
6 1 1 3 |Kristoffer Simensen Stremsgren M |Sen tvilling Ugift 1872
7 1 1 4 |Sigrid Simensdatter |Stremsgren K | Tvilling datter Ugift 1872 |
8 1 | 2 | (1.2 |@ren | [| | |

What | Hope to Show You...

 That APLis an inherently parallel notation which
makes it easy to think about, and “crunch”, arrays

 That APL encourages the construction of functional
DSL’s — without demanding a purely functional
approach to coding

 That APL is a “"tool of thought”, which helps us
discover suitable algorithms and solutions through
experimentation

What | Hope | Demonstrated...

The Data is at your Fingertips™

APL Encourages the construction of functional DSLs
— Work closely with - or BE - the Domain Expert

... That Dyalog APL blends Array, Functional and
Object Oriented paradigms “seamlessly”

— Allows you to use the Tool of Thought which is appropriate
to the task

... with tight interop with Object Frameworks

— Provide, Consume and Extend COM, CLR (& soon JVM)
Classes

Parallelism

"Map” is the default behaviour for many primitives
We automagically parallelize each function in

+/ Quantity x Price + Discount

IBM APL2 used the "370 Vector Facility” from 1987

However, on modern hardware, "interpreted
SIMD” hits memory bottlenecks hard

Parallelism ...

We are working on a compiler and considering
“optional type declarations”, etc.

Many “idioms” are already recognized by the
interpreter. For example X/1 pX.

We have an experimental interpreter w/closures
P.Each P.Outer P.Rank are multi-process
versions of familiar APL "operators”

— Refactoring can be handled by non-technical developers

— Insurance company saw 5x speedup on 8-core i7 for
pension calculations

— "bang for the buck” here and now

Can an interpreter be FAST?

* You can always write a faster program in a
compiled language...

— |IF you have the time to figure out how to do it right

— On large data, APL expressions have VERY LITTLE
interpreter overhead — very few loops
* (+/o+pw) can be thought of as "bytecode”
— We have spent 30 years optimizing 1-bit, 1-, 2- and 4-
byte integers, so arrays are compact

* ... and memory access is getting expensive

— Some parallelism is automatic

In Practice ...

On synthetic benchmarks, C[#]&family usually beat APL

... But large APL applications often outperform and
“outscale” competitors using compiled languages

Close collaboration between domain experts and

software engineers allows efficient operations on
compact data representations

— In rare cases hotspots are recoded in C & friends after
“discovery” in APL (APL code lives on for R&D and QA)

It is straightforward to experiment and discover
alternative algorithms, and apply mathematical insights

Object hierarchies seem to encapsulate data in ways
which severely constrain the set of possible optimizations

Types and Correctness

 APL s called "write only” by those who can not read it,
in practice the reverse is true for well-written code

— Compare {+/o+pw} to traditional alternatives
* No type definitions, almost no loops or other “fluff”

* Extremely high “semantic density” leads to Domain Experts being
able to read the code and participate in refactoring

* Build in hours, refactor & ship frequently - for decades ©

 The really interesting bug is the broken algorithm

“"The only program that stands a chance of being correct is a short

7

one.
(Arthur Whitney, Kx Systems)

Some Customers

SimCorp (DK), APL Italiana (1),
Fiserv Investment Services (US), Infostroy Ltd (Russia)
— Leaders in various markets for Asset Management Systems
KCI Corp (US)
— Budgeting and Planning
Carlisle Group (US)
— Collateral and Securitization for Global Capital Markets
ProfDoc Care (Sweden)

— One of the worlds largest Patient Journal systems with 40,000 users and
2.5 million patient records in Sweden, and sub-second response

ExxonMobil (US)

— Optimizes the “Cracking” of Petroleum Products using APL

Typically used in emerging or constantly churning markets

Curious?

* Download free "Mastering Dyalog APL” PDF
(or buy hardcopy from Amazon)

* Download a Free Trial System

— Windows 32-bit,
Contact Dyalog for trials on other platforms

— HTTP://TRYAPL.ORG

