R EFACTORING
TO PATTERNS

Josnua KERIEVSKY

Forewords by Ralph Johnson and Martin Fowler
Afterword by John Brant and Don Roberts

Refactoring to Patterns

9

mndustmal loGic

Joshua Kerievsky
joshua@industriallogic.com

Hello World - Strategy

interface MessageStrategy {
public void sendMessage () ;

abstract class AbstractStrategyFactory {
public abstract MessageStrategy createStrategy (MessageBody mb) ;

class MessageBody {
Cbject payload;
public Object getPayload() {
return payload;

public void configure (Object obj) {
payload = obj;

public void send(MessageStrategy ms) |
ms . sendMesasage () ;
}

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Hello World - Factory

class DefaultFactory extends AbstractStrategyFactory {
private DefaultPactory() {

static DefaultPactory instance;
public static AbstractStrategyFactory getInstance () {
if (instance == null)
instance = new DefaultFactory();
return instance;

}

public MessageStrategy createStrategy (final MessageBody mb) {
return new MessageStrategy() {
MessageBody body = mb;
public void sendMessage() {
Object obj = body.getPayload() ;
Sysatem.out.println (obj);

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Hello World - Main

public class HelloWorld |
public static void main(String(] args) |
MessageBody mb = new MeasageBody() ;
mb. confiqure ("Hello World!");
AbatractStrategyFactory asf = DefaultFactory.getInstance();
MessageStrateqy strateqy = asf.createStrategy(mb);
mb. gend (strategy) ;

Thanks to Jason Tiscioni for this example.

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Thomas Jeffe

“We hold
undenial

and

Benjamin Fra

“We holc

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

John Thompson,M M=kES
2 ZeilS Dals (Ofrsedy=rohney

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

John Thompson

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

“All good writing is based upon revision”
Jacques Barzun, Simple & Direct, 4t Edition

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

What Is A Pattern

Each pattern is a three-part rule, which expresses a relation between a certain
context, a problem, and a solution.

As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and a
certain spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how
this spatial configuration can be used. over and over again, to resolve the given
system of forces. wherever the context makes it relevant.

The pattern is. in short, at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing, and when we must
create if. It is both a process and a thing; both a description of a thing which is
alive, and a description of the process which will generate that thing.

[Alexander, ATWoB, p247]

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Algebra & Word Problems

In algebra class, we first learn different manipulations, like:
“add the same value to both sides of the equation”

“the commutative property of addition allows us to swap its
operands.”

Once we know the manipulations, we’re given word problems:
“Atrain leaves New York heading West. . . .”

To solve this problem, you express it in terms of an algebraic equation
and then apply the rules of algebra to arrive at an answer.

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Refactoring & Patterns

Design patterns are the word problems of
the programming world; refactoring is its
algebra. After having read Design Patterns
[DP], you reach a point where you say to
yourself, “If | had only known this pattern,
my system would be so much cleaner
today.” The book you are holding
introduces you to several sample
problems, with solutions expressed in the
operations of refactoring.

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

The Algebra of Refactoring

Many people will read this book and try to memorize the
steps to implement these patterns. Others will read this
book and clamor for these larger refactorings to be
added to existing programming tools. Both of these
approaches are misguided. The true value of this book
lies not in the actual steps to achieve a particular pattern
but in understanding the thought processes that lead to
those steps. By learning to think in the algebra of
refactoring, you learn to solve design problems in
behavior-preserving steps, and you are not bound by the
small subset of actual problems that this book
represents.

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Patterns of Refactoring

So take these exemplars that Josh has
laid out for you. Study them. Find the
underlying patterns of refactoring that are
occurring. Seek the insights that led to the
particular steps. Don’t use this as a
reference book, but as a primer.

Smells

Duplicated Code [F]
Long Method [F]
Conditional Complexity
Primitive Obsession
Indecent Exposure
Solution Sprawl
Alternative Classes with Different Interfaces [F]
Lazy Class [F]

9. Large Class [F]

10. Switch Statements [F]
11. Combinatorial Explosion
12.0Oddball Solution

N>R LN -~

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Deoderizing Refactorings

Smell Refactoring(s)

Duplicated Code (44) [F] Form Template Method (174),

Introduce Polymorphic Creation with Factory Method (80),
Chain Constructors (285),

Replace One/Many Distinctions with Composite (189),
Extract Composite (181),

Unify Interfaces with Adapter (209),

Introduce Null Object (254)

Long Method (44) [F] Compose Method (109).

Move Accumulation to Collecting Parameter (263),
Replace Conditional Dispatcher with Command (164),
Move Accumulation to Visitor (269),

Replace Conditional Logic with Strategy (114)

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Smell Refactoring(s)

Conditional Complexity (45)

Replace Conditional Logic with Strategy (114),
Move Embellishment to Decorator (126).

Replace State-Altering Conditionals with State (144),
Introduce Null Object (254)

Primitive Obsession (45) [F]

Replace Type Code with Class (241),

Replace State-Altering Conditionals with State (144),
Replace Conditional Logic with Strategy (114),
Replace Implicit Tree with Composite (154),
Replace Implicit Language with Interpreter (227),
Move Embellishment to Decorator (126).
Encapsulate Composite with Builder (87)

Indecent Exposure (46)

Encapsulate Classes with Factory (73)

Solution Sprawl (46)

Move Creation Knowledge to Factory (63)

Alternative Classes with Different
Interfaces (47) [F]

Unify Interfaces with Adapter (209)

Lazy Class (47) [F]

Inline Singleton (102)

Large Class (47) [F]

Replace Conditional Dispatcher with Command (164),
Replace State-Altering Conditionals with State (144),
Replace Implicit Language with Interpreter (227)

Switch Statements (47) [F]

Replace Conditional Dispatcher with Command (164),
Move Accumulation to Visitor (269)

Combinatorial Explosion (47)

Replace Implicit Language with Interpreter (227)

Oddball Solution (48)

Unify Interfaces with Adapter (209)

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Benefits of Composite Refactorings

» They provide an overall plan for a
refactoring sequence.

» They suggest non-obvious design
directions.

* They provide insights into implementing
patterns.

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Pattern: Factory Method

Structure:

Product |<_.__._.. Creator

factoryMethod() : Product product = factoryMethod():
anOperation() : void

%

| ConcreteProduct |<— ——————— ConcreteCreator
factoryMethod() : Product ~{----—- ‘l return new ConcreteProduct(...) %

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

There Are Many Ways To
Implement A Pattern!

| Product

I< _____

Creator

factoryMethod() : Product -}

| return new ConcreteProduct(...) BI

anOperation() : void

Aﬁ

| ConcreteProduct }<

ConcreteCreator

factoryMethod() : Product -4

product = factoryMethod(); [ﬁ

{ return new ConcreteProduct(...) ‘%

Creator

factoryMethod() : Product

anOperation() : void

ﬁfoduct = factoryMethod(); ﬁ

Alk

ConcreteCreator

factoryMethod() : Product -}

return new Product(...)

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Pattern: Composite

Sample Structures:

Client

C

Composite

Composite: Leaf

operation()
add(:Component)
remove(:Component)
getChild(:int)

children

Leaf Comp

operation()

add(:Component)
remove(:Component)
getChild(:int)

operation() -------------1

-1 forall g in children
g.operation();

TagNode

-attributes: String
-tagName : String
-children: List

+TagNode(name: String)
+add(childNode: TagNode)
+addAttribute(...)
+addValue(...)

+toString() : String

Composite: Component

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

There Are Many Ways To
Implement A Pattern

It seems you can’t overemphasize that a pattern’s Structure diagram is just an
example, not a specification. It portrays the implementation we see most often.
As such the Structure diagram will probably have a lot in common with your own
implementation, but differences are inevitable and actually desirable. At the very
least you will rename the participants as appropriate for your domain. Vary the
implementation trade-offs, and your implementation might start looking a lot
different from the Structure diagram. [Vlissides, C++ Report, April 1998]

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Replace Constructors with Creation Methods

Constructors on a class make it hard to decide
which constructor to call during development

Replace the constructors with intention-revealing
Creation Methods that return object instances

Loan

+Loan(commitment, riskRating, maturity)

+Loan(commitment, riskRating, maturity, expiry)

+Loan(commitment, outstanding, riskRating, maturity, expiry)
+Loan(capitalStrategy, commitment, riskRating, maturity, expiry)
+Loan(capitalStrategy, commitment, outstanding, riskRating, maturity, expiry)

v

Loan

-Loan(capitalStrategy, commitment, outstanding, riskRating, maturity, expiry)
+createTermLoan(commitment, riskRating, maturity) : Loan

+createTerml oan(capitalStrategy. commitment, outstanding, riskRating. maturity) : Loan
+createRevolver(commltment outstandlng nskRatmg exglm Loan

[a g iy
+createRCTL(comm|tment outstandlnq nskRatmg matung exgu) Loan

+createRCTL(capitalStrat commitment. outstanding. riskRating, maturity, expiry) : Loan

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Patterns of Refactoring

Automation First

Manual refactorings are dirt roads. Automated
refactorings are highways. When deciding how
to refactor, look first for the highways.

Client First

We like to refactor smelly code — yet we may
only see a manual way to refactor. To find a
simpler, automated way of refactoring, consider
starting with a client of the smelly code.

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Move Accumulation to Visitor

A method accumulates information from
heterogeneous classes.

Move the accumulation task to a Visitor that can
visit each class to accumulate the information.

<<interface>> | - | TextExtractor StringBuffer results = new StringBuffer(); B
Node Nodelterator nodes = parser.elements();
/\ extractText() :String - - -——- ———] while (nodes.hasMoreNodes()) {
T

Node node = nodes.nextNode();

if (node instanceof StringNode) {
-| LinkTag ...add contents to results
} else if (node instanceof LinkTag) {

...add contents to results
} else if (node instanceof Tag) {

...add contents to results
-| StringNode Yelse if ..
}
}

return results.toString());

_———1’———1————1‘———
I
I

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

How HTMLParser Works

<HTML>
<BODY>
Hello, and welcome to my Web page! I work for

</
</BODY>
</HTML>

The parser recognizes the following objects when parsing this HTML:

e Tag (for the <BODY> tag)
e StringNode (for the String, “Hello, and welcome . . .”)

LinkTag (for the .. tags)

e TmageTag (for the tag)

EndTag (for the </BODY> tag)

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Move Accumulation to Visitor

<<interface>>
NodeVisitor

visitLinkTag(:LinkTag)
visitTag(:Tag)
visitStringNode(:StringNode)

Visitor: Element

<<interface>>
Node

= — |

TextExtractor

accept(:NodeVisitor)

results: StringBuffer

yaN

LinkTag

accept(:NodeVisitor)

extractText(): String

results = new StringBuffer();

Nodelterator nodes = parser.elements();

while (nodes.hasMoreNodes())

nodes.nextNode().accept(this);

return results.toString());

visitLinkTag(:LinkTag)

visitTag(:Tag)

visitStringNode(:StringNode) - —4 ~-add contents to results

n

Tag

accept(:NodeVisitor)

StringNode

Visitor: ConcreteVisitor

accept(:NodeVisitor)—— —‘ nodeVisitor.visitStringNode(this); B‘

- —l:l Visitor: ConcreteElement

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Move Accumulation to Visitor

aNode Visitor aStringNode aLinkTag

T
|
i accept(aNode Visitor)

\j

visitStringNode(aStringNode)

,_
L
A

accept(aNodeVisitor)

| -
[

visitLinkTag(aLinkTag)

A

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Pattern

To

Towards

Away

Adapter Extract Adapter (218), Unify Interfaces with
Unify Interfaces with Adapter (209)
Adapter (209)

Builder Encapsulate Composite

with Builder (87)

Collecting Parameter

Move Accumulation to
Collecting Parameter
(263)

Command

Replace Conditional
Dispatcher with
Command (164)

Replace Conditional
Dispatcher with
Command (164)

Composed Method

Compose Method (109)

Composite

Replace One/Many
Distinctions with
Composite (189),
Extract Composite
(181), Replace Implicit
Tree with Composite
(154)

Encapsulate Composite
with Builder (87)

Creation Method

Replace Constructors
with Creation Methods

(55

Decorator

Move Embellishment to
Decorator (126)

Move Embellishment to
Decorator (126)

Factory

Move Creation
Knowledge to Factory
(63). Encapsulate
Classes with Factory

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

(@3)

Factory Method Introduce Polymorphic
Creation with Factory
Method (80)
Interpreter Replace Implicit
Language with
Interpreter (227)
Iterator Move Accumulation to
Visitor (269)
Null Object Introduce Null Object
(254)
Observer Replace Hard-Coded Replace Hard-Coded
Notifications with Notifications with
Observer (200) Observer (200)
Singleton Limit Instantiation with Inline Singleton (102)
Singleton (250)
State Replace State-Altering | Replace State-Altering
Conditionals with State | Conditionals with State
(144) (144)
Strategy Replace Conditional Replace Conditional
Logic with Strategy Logic with Strategy
114 (114)
Template Method Form Template Method
(174)
Visitor Move Accumulation to Move Accumulation to

Visitor (269)

Visitor (269)

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

More Information

refactoring.com
industriallogic.com/xp/refactoring
industriallogic.com/training
refactoring@yahoogroups.com
eclipse.org

intellij.com

Copyright © 2005, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

