
Yesod Web Framework

Michael Snoyman
QCon San Francisco 2011

What is Yesod

●Web framework
●Written in Haskell

○Strongly typed
○ Pure/side-effect free
○ Fast

● Collection of libraries
● Full stack

○Web server
○Templating
○ORM
○Add-on libraries: everything from auth to gravatar

● Yesod (יסוד) means foundation in Hebrew

Brief history

●Started ~2.5 years ago by yours truly
●Went back to full-time web development
●Unhappy with existing options

○ Fan of static typing
○Not a fan of Java

●Had used Haskell to save the day on a few projects at
my previous job

●Decided to double-down on it
●Used it for a few contract jobs, great results

Used in the Real World®

●Through Suite Solutions:
○ Production Yesod site at Emerson (Social Knowledge

Base)
○Warp webserver powering Dell's context-sensitive

help
○ Various Yesod libraries used at Cisco and LifeTech

●Three companies (that I know of) pushing Yesod-
powered solutions to clients

●Suite Solutions sponsoring Yesod development
● Very active, friendly community, lots of them making

sites too

Why Yesod?

● Evolutionary, not revolutionary
○ Follow standard practices (e.g., MVC)
○Offer experimental options (e.g., MongoDB)

● Use compiler to avoid bugs
○Type system fixes the "boundary issue"
○Avoid things like XSS automatically

●Make it fast
○High performance libraries under the surface
○Simple, high-level API

● Encourage modularity (widgets, subsites, middleware)

Correctness

Type-safe URLs

●Datatype for all URLs in application
●All valid URLs can be expressed as a value
●Synchronized parse/render/dispatch functions
●Need four components to be aligned

○Time for code generation (Template Haskell)
○Want a simple syntax (QuasiQuotes)

Type-safe URLs: What you say

mkYesod "MyApp" [parseRoutes|
/ RootR GET
/blog/#BlogId BlogPostR GET
|]

Type-safe URLs: What you mean

data MyAppRoute = RootR | BlogPostR BlogId

renderMyAppRoute RootR = []
renderMyAppRoute (BlogPostR blogId) =
 ["blog", toSinglePiece blogId]

parseMyAppRoute [] = Just RootR
parseMyAppRoute ["blog", blogIdText] = do
 blogId <- fromSinglePiece blogIdText
 Just $ BlogPostR blogId
parseMyAppRoute _ = Nothing

Routing: Yesod vs Django

Django
urlpatterns = patterns('',
 (r'^articles/2003/$', 'news.views.special_case_2003'),
 (r'^articles/(\d{4})/$', 'news.views.year_archive'),
 (r'^articles/(\d{4})/(\d{2})/$', 'news.views.month_archive'),
 (r'^articles/(\d{4})/(\d{2})/(\d+)/$', 'news.views.article_detail'),
)

Yesod
/articles/2003 SpecialCase2003R
/articles/#Year YearArchiveR
/articles/#Year/#Month MonthArchiveR
/articles/#Year/#Month/#Day ArticleDetailR

Type-safe URLs: Why they matter

●Definition of paths in one place
●Automatic marshaling based on datatypes
● Change datatypes: compiler catches all errors

Example: try changing your URLs
/blog/5
/post/5
/post/2011/09/my-blog-post

Compile-time templates

●User-friendly syntax
●Syntax checked at compile time
●Use Haskell variables directly

○No need for repetitious glue code
○Types checked automatically

●Simple control structures for Hamlet
○ Basically logic-less...
○Though you can get away with some logic

●Debug versions of CSS and JS
○Quick development cycle

Hamlet (HTML)

!!!
<html>
 <head>
 <title>#{pageTitle} - My Site
 <link rel="stylesheet" href=@{StylesheetR}
 <body>
 <h1 .page-title>#{pageTitle}
 <p>Here is a list of your friends:
 $if null friends
 <p>Sorry, I lied, you don't have any friends.
 $else

 $forall friend <- friends
 #{friendName friend} (#{show $ friendAge friend} years old)
 <footer>^{copyright}

Lucius (CSS)

section.blog {
 padding: 1em;
 border: 1px solid #000;
 h1 {
 color: #{headingColor};
 }
 background-image: url(@{MyBackgroundR});
}

Julius (Javascript)

$(function(){
 $("section.#{sectionClass}").hide();
 $("#mybutton").click(function(){
 document.location = "@{SomeRouteR}";
 });
 ^{addBling}
});

XSS Protection

●Html datatype
●ToHtml typeclass
● If you use textual type, entities escaped
● If you use an Html value, they aren't escaped
● Explicitly avoid escaping with preEscapedText
●OverloadedStrings extension makes it easy to type it in

XSS Protection: Example

name :: Text
name = "Michael <script>alert('XSS')</script>"

main :: IO ()
main = putStrLn $ renderHtml
 [shamlet|#{name}|]

Output:

Michael <script>alert('XSS')</script>

Persistent

●Declare entity definitions once
●Automatically generate Haskell types, marshaling

functions, and SQL schema
●Separate ID datatype for each table
●All marshaling and validity checking handled by library
●Automatic migrations
●Swap SQL and MongoDB easily.

Persistent: Declare entities

mkPersist [persist|
Person
 name String
 age Int Maybe
BlogPost
 title String
 authorId PersonId
|]

Persistent: CRUD
runMigration migrateAll

johnId <- insert $ Person "John Doe" $ Just 35
janeId <- insert $ Person "Jane Doe" Nothing

insert $ BlogPost "My fr1st p0st" johnId
insert $ BlogPost "One more for good measure" johnId

oneJohnPost <- selectList [BlogPostAuthorId ==. johnId] [LimitTo 1]
liftIO $ print (oneJohnPost :: [(BlogPostId, BlogPost)])

john <- get johnId
liftIO $ print (john :: Maybe Person)

delete janeId
deleteWhere [BlogPostAuthorId ==. johnId]

Performance

Web Application Interface (WAI)

● Low-level interface between web apps and servers
●Used by multiple frameworks, pioneered by Yesod
●Some apps use WAI directly without a framework
●Multiple backends, mostly Warp
● Built for performance an generality

Warp benchmarks
Benchmarks are old, haven't had a chance to update yet.

blaze-builder

●Think of StringBuilder from Java
● Efficiently fill up memory buffers
● Buffer filling action

○Avoids extra buffer copies
● Keep a difference list of them

○Diff list == O(1) append
○Still a persistent data structure == cheap parallelism

●Optimal buffer size = minimal system calls
●Used through entire stack

○Templates
○Server

blaze-builder: Example

●Web server generates:
○Status line
○ 4 response headers

●Application generates:
○ 3 response headers
○HTML interspersed with 7 variables

● Result: (1 + 4 + 3 + 7 + 8 == 23) Builders
● Concatenated together
●They all copy to a single memory buffer
● Entire response == 1 system call

Enumerator

●Abstraction over data streams
● Complicated at first, simplifies many common activities
●Deterministic resource handling
● Easily combine different enumerator libraries

○ http-enumerator
○ persistent
○ xml-enumerator
○warp
○ zlib-enum

Multi-threaded runtime

●Async programming is efficient, but difficult
●So pretend it's a sync API, and use async inside
● Light-weight threads
●Uses whatever system call the current OS supports

○ kqueue
○ epoll

● Persistent data structures == simple concurrency
●Warp uses no locks, timeout code uses a single lock-free

shared memory access (atomicModifyIORef)

Haskell is fast

●GHC is industrial strength compiler
● Lots of development, lots of optimizations
●Actively developed constantly
● Exciting new routes like LLVM backend
● Performance comparable to Java
● Check out the programming language shootout

Modularity

Widgets

● Package up HTML, CSS and Javascript together
● Reuse same widget all over the place
●No need to remember to include CSS/JS separately
●Affect both <body> and <head> simultaneously
● Can perform database queries as well
● Example: recent posts component on multiple pages

Widgets: Example

existingLinks :: Widget
existingLinks = do
 links <- lift $ runDB
 $ selectList [] [LimitTo 5, Desc LinkAdded]
 toWidget [hamlet|
<ul .links>
 $forall (linkid, link) <- links

 #{linkTitle link}
|]
 toWidget [lucius|.links { list-style: none } |]
 toWidgetHead [hamlet|
 <meta name=keywords content=links>|]

defaultLayout

●Define your site template
●Automatically used by special pages

○ Error responses (e.g., 404)
○Subsites (e.g., login page)

●Defined in terms of widgets
●Growl, breadcrumbs

defaultLayout: Example

getAboutR :: Handler RepHtml
getAboutR = defaultLayout [whamlet|
<p>This is a simple application, pay it no heed.
^{existingLinks}
|]

Subsites

●Multiple routes, config data, all grouped together
●Due to defaultLayout, fits in with rest of site
●Used for:

○Static files
○Authentication
○Admin site (work-in-progress)

Middleware

●At WAI level: can be used outside of Yesod
● Yesod turns on some middlewares by default

○GZIP
○ JSON-P
○Autohead

Other Goodness

Designer friendly

●Designers like Hamlet
○ "HTML done right"

● Routing file easy to understand
●More local error messages
● Immediate feedback (on compile) for bad HTML

○ But I'll admit, error messages aren't great

Users of Yesod

● Refugees from Rails/Django/PHP who already love
Haskell

●Haskell programmers new to web development
●Web developers interested in trying out a functional

language
● Even some people with neither Haskell nor web

experience

Type-safe URLs: Fringe benefits

●Authorization
○Single function for whole site
○ Pattern match to make sure we cover all cases

● Breadcrumbs
○Define title and parent page for each route
○ Easily move around entire pieces of the site
○Ties in nicely with defaultLayout (covered later)

GUI apps

●Writing cross-platform applications can be a pain
● Just make it a web app!
●TKYProf does just that
●wai-handler-launch and wai-handler-webkit
●Already in use in the real world

Everything else

● clientsession
●websocket/eventsource support
● devel server
●Scaffolded site
●Deploy to Heroku
●Third-party packages (goodies)
● First framework (?) with BrowserID support
●Only framework (?) with first-class MongoDB support

Questions?

More info at:
www.yesodweb.com

http://www.yesodweb.com

