
ARCHITECTURE
AT SIMPLEGEO

fturg Mike Male
STAYING AGILE AT SCALE

ABOUT ME

MIKE MALONE
LEAD ARCHITECT
mike@simplegeo.com
@mjmalone

For the last two years I’ve been helping develop and
operate the underlying technologies that power
SimpleGeo’s location-based services & GIS platform.

I, FOR ONE, WELCOME OUR NEW
PORTLANDIAN OVERLORDS

Evyg I know
abt Pt

IN THE NEXT HOUR
ARCHITECTURE

What is architecture?

What is good architecture?

SOFTWARE ARCHITECTURE
What is software architecture?

What is good software architecture?

SIMPLEGEO’S ARCHITECTURE
What environmental constraints helped define SimpleGeo’s architecture?

What tenets helped shape SimpleGeo’s architecture?
• What is the rationale for the tenet? How is it consistent with the core architectural

philosophy?

• What is an example of an architectural choice that exemplifies this tenet?

Briefly...

SOME ARCHITECTURE?

The process and product of plan-
ning, design, and construction

ARCHITECTURE
WHAT DOES IT EVEN MEAN?

PART PHILOSOPHICAL
Based on some value system

Balances technical, social, environmental,
and aesthetic considerations

PART PRAGMATIC
Scheduling

Cost estimation

Construction administration

RYUGYONG HOTEL

Objective criteria can be used
to judge building quality

ARCHITECTURE
WHAT MAKES IT GOOD?

GOOD ARCHITECTURE IS
Fit for its intended use
Cost effective (within budget)
Environmentally friendly

INTRINSIC VS. INSTRUMENTAL
Intrinsic good in-and-of itself
Instrumental a means to other
goods

FLICKR.COM/PHOTOS/STUCKINCUSTOMS/210118173/

However, a great deal of
subjectivity is also involved

ARCHITECTURE
WHAT MAKES IT GOOD?

GOOD ARCHITECTURE IS
Aesthetically pleasing
Culturally relevant
A positive influence on its environment

NO ACCOUNTING FOR TASTE
Hard characteristics to define and
measure
But they’re critically important!

REASONABLE MINDS
CAN DIFFER

EXPERIENCE MUSIC PROJECT
FLICKR.COM/PHOTOS/DROCPSU/411079775/

The assertion that software development is like
construction is a contentious one...

FACT: PROGRAMS AREN’T
BUILDINGS

SOFTWARE DEVELOPMENT VS. CONSTRUCTION
Incremental vs. Structured & Sequential

Adaptable vs. Fixed

Cheap vs. Expensive

Intangible vs. Tangible

BETTER METAPHOR? - LANGUAGE & WRITING
But that doesn’t mean the construction metaphor is meaningless

The construction metaphor provides a language that we can use to
communicate ideas in software development

The high-level decisions that constrain a system
such that its fundamental structure emerges

SOFTWARE ARCHITECTURE
WHAT DOES IT EVEN MEAN?

SOFTWARE ARCHITECTURE IS...
The high-level breakdown of a system into its parts [FOWLER]

The set of significant decisions about the organization of a software
system [KRUCHTEN, BOOCH, BITTNER, REITMAN]

The externally visible properties of software elements, and the
relationships among them (no internal implementation details)
[BASS, CLEMENTS, KAZMAN]

Whatever the important stuff is [FOWLER]

LOOSELY DEFINED

BEASTIE

SOFTWARE ARCHITECTURE
WHAT MAKES IT GOOD?
GOOD ARCHITECTURE IS

Robust lacking bugs and tolerant of faults

Maintainable easy to maintain and extend

Useful utility, beyond the immediate need

Scalable able to grow in capacity

Common vision direction, strategy

Agile simple enough to refactor easily

Extensible able to grow in features

Responsive performant now and after
expanding or scaling

WARD’S WIKI <C2.COM/CGI/WIKI?GOODARCHITECTURE>

PLAY-DOH PLATO
<MAYBELOGIC.ORG/MAYBEQUARTERLY/

02/0209PLATOPLAY-DOH.HTM>

SOFTWARE ARCHITECTURE
WHAT MAKES IT GOOD?
FOUNDATION OF QUALITY

Based on some value system

Balances technical, social,
environmental, and aesthetic
considerations

KEEP ASKING “WHY?”
Provides perspective - what’s the
point of all of this?

Promotes “outside the box”
thinking
• Sometimes technical problems have a

non-technical solution (and vice-versa)

BEING AN ARCHITECT
WHAT DOES IT EVEN MEAN?
ARCHITECTS ARE GENERALISTS

Architects must see the trees without losing site of the forest
Architects shouldn’t work from an ivory tower, they should
have deep knowledge of systems they work with

Architects are responsible for creating an environment that
produces high quality software

ARCHITECTS BALANCE CONFLICTING GOALS
Architects must communicate with stakeholders to advance
their architectural vision

Architects must understand the broader environment in which
their system exists

SimpleGeo’s architecture works well for a location-
based services platform... but that’s not what you do.

SIMPLEGEO’S
ARCHITECTURE

VERNACULAR ARCHITECTURE
Methods of construction that use locally available resources and
traditions to address local needs and circumstances
• Evolves over time to reflect the environmental, cultural, and historical context in

which it exists

• Often dismissed as crude and unrefined

• Based largely on knowledge achieved through trial and error and handed down
through the generations, transmitted by local traditions and culture (e.g., blogs,
wikis, conferences)

Most of the rest of this presentation will be “vernacular architecture”

THE ENVIRONMENT
EXTERNAL CONSTRAINTS ON OUR ARCHITECTURE

PLATFORM AS A SERVICE
Web Service API using HTTP for transport
Massively multi-tenant for economic and operational reasons
Accounting demands accurate metrics collection
Low tolerance for outages - unlike consumer web apps, our customers tend to notice
even minor outages
Brand built on scalability and availability

LOCATION (GIS)
Limited off-the-shelf technology that’s usable at scale
Computationally complex and highly specialized
Data density has high variance

REAL-TIME
Large operational workload with frequent updates
Consumer applications demand low-latency request processing

storage

queues

AWS
ELB

data centers
... ...

 api servers

index

Apache Cassandra

reads

writes

auth/proxy

record
storage

geocoder

reverse
geocoder

GeoIP

pushpin

HTTP

gnopwww

AWS
RDS

THINGS CHANGE
SHIT HAPPENS
DEAL WITH IT

CHANGE HURTS
CHANGE IS RISKY, BUT NECESSARY

The best we can do is reduce the risk of change
Measure important stuff
• Provide fast feedback - the value of information reduces quickly as it ages

• Think ahead - good metrics and monitoring requires some foresight

• Build monitoring hooks for key metrics throughout your systems

• Be aware / beware of observer effect

Invest in a monitoring system that can scale with your system and org
• It must be easy to integrate with different code-bases and technologies

• It must be capable of handling high throughput

• It must be reasonably real-time (e.g., writing to HDFS and running MR jobs
probably isn’t good enough)

STATSNY
HTTP service written in python,
backed by redis

Receives data via TCP or UDP

Handles timers and counters
grouped by endpoint, method, and
response code

• Computes average and variance

Records full request and response
headers for lightweight problem
diagnosis

SIMILAR TO ETSY’S STATSD
<github.com/etsy/statsd>

PUSHING NEW CODE
AT SIMPLEGEO
1. PUSH TO GITHUB PENDING BRANCH

Post-commit hook triggers Jenkins build and test
Once complete, build success/failure notification is sent out via IRC
• If tests failed, stop

• If tests pass, push to master branch on GitHub (only Jenkins commits to master)

2. POST-COMMIT HOOK ON MASTER BRANCH TRIGGERS DEB PKG BUILD
OS package management lets us track system dependencies in the package manifest (could
also use configuration management tools for this)

Packages are hosted in repoman - a RESTful service for managing Debian repositories

3A. PUPPET UPGRADES PRODUCTION AUTOMATICALLY FOR MOST
SERVICES
3B. FOR CRITICAL SERVICES, PROMOTE PACKAGE

Promotion simply adjusts config management to install a newer version of a package, and can
be done via IRC

Extra step for critical services that need special attention during upgrade (e.g., Gate, databases)

THE BIG BOARD

CLOSE THE LOOP
ON PUSHES

THE BIG BOARD
At-a-glance summary of API
health and important business
metrics

Often the first indication of service
health problems that aren’t caught
by monitoring

Provides critical feedback
immediately after code pushes

UPGRADING GATE
PHASED ADOPTION
GATE IS THE ENTRY POINT INTO SIMPLEGEO

Performs auth, communicates with statsny and our billing
infrastructure, and routes to backend services

If it’s down, SimpleGeo is down (so it can’t go down)

Lightweight, high speed, shared-nothing service (in node.js)

PHASED ADOPTION
Remove an availability zone from the ELB

Upgrade Gate in that availability zone

Validate that the new version is performing as expected

Re-associate the availability zone with ELB

Repeat for other availability zones

UPGRADING CASSANDRA
PARALLEL ADOPTION
UPGRADING CASSANDRA

Cassandra mutations are idempotent and
commutative
• You can apply a mutation multiple times

• You can apply mutations in any order

A queue decouples database clusters from end-
user visible systems
Using AWS, it’s cheap and easy to provision parallel
infrastructure

PARALLEL ADOPTION

existing
cluster

queues

AWS
ELB

... ...

writes
reads

UPGRADING CASSANDRA
PARALLEL ADOPTION
UPGRADING CASSANDRA

Cassandra mutations are idempotent and
commutative
• You can apply a mutation multiple times

• You can apply mutations in any order

A queue decouples database clusters from end-
user visible systems
Using AWS, it’s cheap and easy to provision parallel
infrastructure

PARALLEL ADOPTION
Provision new cluster running new software

existing
cluster

queues

AWS
ELB

... ...

new
cluster

writes
reads

UPGRADING CASSANDRA
PARALLEL ADOPTION
UPGRADING CASSANDRA

Cassandra mutations are idempotent and
commutative
• You can apply a mutation multiple times

• You can apply mutations in any order

A queue decouples database clusters from end-
user visible systems
Using AWS, it’s cheap and easy to provision parallel
infrastructure

PARALLEL ADOPTION
Provision new cluster running new software
Start writing new data to both clusters

existing
cluster

queues

AWS
ELB

... ...

new
cluster

writes
reads

UPGRADING CASSANDRA
PARALLEL ADOPTION
UPGRADING CASSANDRA

Cassandra mutations are idempotent and
commutative
• You can apply a mutation multiple times

• You can apply mutations in any order

A queue decouples database clusters from end-
user visible systems
Using AWS, it’s cheap and easy to provision
parallel infrastructure

PARALLEL ADOPTION
Provision new cluster running new software
Start writing new data to both clusters

Backfill old data from existing cluster to new
cluster

existing
cluster

queues

AWS
ELB

... ...

new
cluster

writes
reads

backfill

UPGRADING CASSANDRA
PARALLEL ADOPTION
UPGRADING CASSANDRA

Cassandra mutations are idempotent and
commutative
• You can apply a mutation multiple times

• You can apply mutations in any order

A queue decouples database clusters from end-
user visible systems
Using AWS, it’s cheap and easy to provision parallel
infrastructure

PARALLEL ADOPTION
Provision new cluster running new software
Start writing new data to both clusters
Backfill old data from existing cluster to new cluster
Validate that the new cluster is performing as
expected

existing
cluster

queues

AWS
ELB

... ...

new
cluster

writes
reads

reads

UPGRADING CASSANDRA
PARALLEL ADOPTION
UPGRADING CASSANDRA

Cassandra mutations are idempotent and
commutative
• You can apply a mutation multiple times

• You can apply mutations in any order

A queue decouples database clusters from end-
user visible systems
Using AWS, it’s cheap and easy to provision parallel
infrastructure

PARALLEL ADOPTION
Provision new cluster running new software
Start writing new data to both clusters
Backfill old data from existing cluster to new cluster
Validate that the new cluster is performing as
expected
Reconfigure clients to read from the new cluster

queues

AWS
ELB

... ...

new
cluster

writes

reads

IF IT HURTS, DO IT MORE
ORGANIZATIONS, LIKE PEOPLE, GET BETTER AT
THINGS THEY DO OFTEN

Push all the time - it’ll get less painful

Upgrade all the time - it’ll get less painful

Write tests all the time - it’ll get less painful

Do code reviews all the time - it’ll get less painful

Merge branches all the time - it’ll get less painful

Fail all the time - it’ll get less painful

IN GENERAL, IF SOMETHING HURTS, DO IT MORE

ALWAYS BE FAILING
TOOLS & SYSTEMS
EXPECT AND EMBRACE FAILURE

If you think you can prevent failure you’re not developing your ability to
respond [ALLSPAW, HAMMOND]

Make the system resilient to failure instead trying to prevent failure
• SimpleGeo “database buffer logs” log incoming (idempotent) database operations for

replay if a failure occurs

DETECTING FAILURE
High level monitoring can alert you to user-visible problems
• Run integration tests in production, alert on failure

Fail fast and loud so people can quickly see causal relationships between a
change and a failure
• It’s ok to throw an exception - when you’re coding, if you don’t know what to do, resist

the temptation to guess

• If there’s a significant lag between something breaking and you knowing it broke there’s a
larger problem that needs to be addressed

ALWAYS BE FAILING
TOOLS & SYSTEMS
ELIMINATE SINGLE POINTS OF FAILURE (SPOFS)

Component and subsystem failures should not result in total system
failures (decouple!)

If you discover an unexpected correlation between systems then either
eliminate it or formalize it
• In a distributed system, any interaction between systems should be treated as a

potential mechanism for cascading failure

KEEP IT SIMPLE AND DON’T REPEAT YOURSELF
Keep small components and subsystems simple by allowing them to fail
(again, they should fail loudly)

Introduce simple fault-tolerance mechanisms strategically at a high-level
to address a range of failure scenarios
• Gate - the entry point into our API - retries HTTP requests that timeout, so other

services don’t bother retrying database requests or requests to sub-services

ALWAYS BE FAILING
CULTURE
LEARN FROM FAILURE, BUT MAKE SURE PEOPLE
AREN’T STIGMATIZED OR AFRAID TO FAIL

Things move way faster when people aren’t afraid to fail

Make failure culturally acceptable - it’s an opportunity for
improvement

Do blame free postmortems

Be careful of a “culture of shame” - jokes aside, respect and
disappointment are way more effective

Red cards at Urban Airship - invest in improvements in
proportion to the cost of the failure

SECURITY
DON’T BE A PEDANT
SECURITY

There is a natural tension between security and usability (a door with a lock is harder
to use) - balance
There are decreasing returns with increased security
• If security makes a system too hard to use people start developing techniques for defeating the

security (e.g., leaving the door propped open)

PERIMETER SECURITY
Like fault-tolerance, we’ve seen the best results when security is centralized, not deep
- in other words, when the system is secured at its perimeter
Give developers sudo privileges in production, but with accountability (no single root
account, proxy box with non-erasable logs)
• We distribute SSH keys with Puppet and lock down access to a single EC2 host (SSH can be

configured to make this easy)

WHAT’S THE PROBLEM
Like failure, security incidents highlight organizational shortcomings - if you’re worried
that your engineers will nuke all of your production boxes you have bigger issues

SECURITY
SOME EXCEPTIONS
GOLDEN GATE FOR CRITICAL STUFF

Web-service proxy that adds accounting, time-lock and two-
person authentication

A fail-safe system isn’t really fail-safe unless it’s procedurally
fail-safe (example: ELB)
• Multi-factor authentication is a good way to add a procedural fail-safe

to a system that doesn’t come that way out of the box

• Take the MFA keyfob, put it in a safe-deposit box, swallow the key

• Good for: ELB, S3, or your own physical hardware

BEASTIE

SOFTWARE ARCHITECTURE
WHAT MAKES IT GOOD?
GOOD ARCHITECTURE IS

Robust lacking bugs and tolerant of faults

Maintainable easy to maintain and extend

Useful utility, beyond the immediate need

Scalable able to grow in capacity

Common vision direction, strategy

Agile simple enough to refactor easily

Extensible able to grow in features

Responsive performant now and after
expanding or scaling

WARD’S WIKI <C2.COM/CGI/WIKI?GOODARCHITECTURE>

THINKING AHEAD

AVOID THE UGLY COUCH -
SIT ON THE FUCKING FLOOR.

DON’T CORNER YOURSELF
CONCEPTUALLY
BUILD FOR ONE YEAR, PLAN FOR
TEN

Time-to-market is important, but you also
need to be able to manage and scale your
systems after you’ve gotten there
• Architectural assumptions are hard to change

• If you don’t plan ahead your future product
roadmap will be driven by technological limitations

Technology is like crappy furniture - it has a
tendency to remain in our lives much longer
than it should

RELATED...
In the information technology industry we
tend to overestimate what we can do in a year
and underestimate what we can do in a
decade [MARC BENIOFF]

There is a lesson here for ambitious system architects: the most
dangerous enemy of a better solution is an existing codebase
that is just good enough.

ERIC S. RAYMOND
THE ART OF UNIX PROGRAMMING

INTERFACES OVER
IMPLEMENTATIONS
IF YOU’RE SHORT ON RESOURCES, INVEST IN
INTERFACES FIRST

“Crappy” implementations are often good enough
• If you’re off the critical path a simple implementation that’s slow is

often better than complex one that’s more efficient

Interfaces are forever (or as close as you can get in this
business)
• Interfaces shape the system in unanticipated ways

• Changing an interface requires rewriting tests, risks related to
backwards compatibility, extensive manual QA, etc.

ABSTRACT
ABSTRACTIONS
COMMUNICATE CONCEPTS, NOT JUST CODE

It’s worth designing and discussing systems using terminology that
doesn’t depend on a particular technology

Decouples the solution from a particular technology choice, which
gives engineers a larger toolbox and more freedom

BIG BOARD STATISTICS AT SIMPLEGEO
Went through several major iterations
• In memory => memcachedb => SimpleDB => redis

The interface never changed - it was designed with a simple goal in
mind and the backing store was insignificant
• Client code didn’t have to change

• Unit tests remained the same, allowing us to validate changes

BEAUTY IN SIMPLICITY
DEFINE & EMPHASIZE CORE CONCEPTS

Simplicity in computer science often means reducing an idea to
its conceptual core
• Emphasizing the concept reduces debate / butthurtedness about

specific technologies

• Having a clear, well articulated, shared understanding of the conceptual
foundation for a piece of technology tends to produce better code

Additional features can be added as “decoration” on top of this
core (postmodern software development)

Example: SimpleGeo Storage
• When we explain the technology we emphasize the ideas, not the fact

that it’s written in Java, built on top of Cassandra, etc.

PENELOPE
DHT SECONDARY INDEXES
SECONDARY INDEXES

In a distributed hash table (DHT) since they offer
straightforward fault tolerance and operational simplicity

Notoriously difficult to implement properly since they
necessarily span nodes (physical machines)
• If your secondary indexes are on the same physical machine as the

data being indexed they’re not very useful (you need to query every
machine)

• If your secondary indexes are distributed separately from the data
being indexed you’re spanning physical hardware

PENELOPE
DHT SECONDARY INDEXES
HOW IT WORKS

Tree nodes are identified by DHT keys

Data value and key are inverted and
stored in appropriate leaf nodes
• {id: 25, name: “Mike”} => “Mike:25”

When leaf nodes exceed a configured
capacity, they’re split

Querying proceeds by passing
function continuations amongst nodes
to be executed “next to” the data

Network hops are reduced by caching
“approximations” of the tree in local
memory

o
oo

PENELOPE
DHT SECONDARY INDEXES
IDEA IS SEPARABLE FROM IMPLEMENTATION

When we discuss Penelope we emphasize the idea, not the
implementation

To get to market faster we’ve made implementation
compromises, but retained a solid conceptual foundation

Decoupling has bled into the implementation, where the
indexing mechanism is almost entirely decoupled from the
underlying DHT

BEASTIE

SOFTWARE ARCHITECTURE
WHAT MAKES IT GOOD?
GOOD ARCHITECTURE IS

Robust lacking bugs and tolerant of faults

Maintainable easy to maintain and extend

Useful utility, beyond the immediate need

Scalable able to grow in capacity

Common vision direction, strategy

Agile simple enough to refactor easily

Extensible able to grow in features

Responsive performant now and after
expanding or scaling

WARD’S WIKI <C2.COM/CGI/WIKI?GOODARCHITECTURE>

PLAYING WELL
WITH OTHERS
(WE’RE ALL ON THE SAME TEAM)

A CONVERSATION WITH GEEBUS

COLLABORATION
GITHUB

We’ve had great success using GitHub
for all of our repositories (public and
private)
• Excellent interface for code navigation and

repository management

• Code reviews become pull requests

COMMUNICATION
At various times we’ve used Campfire
and IRC - both work
Either way, we use chat to communicate
with each other and with our systems
• Botriot.com is a productized version of the

bot that we run at SimpleGeo

OPERATIONAL CONCERNS ARE
ARCHITECTURAL CONCERNS
IF YOUR SYSTEM IS

Hard to deploy, configure, or integrate with other systems

Hard to upgrade without causing outages or introducing a lot
of organizational risk

Hard to monitor, lacking test hooks and other mechanisms for
introspection

Hard to debug when problems occur

Otherwise causing operational headaches

YOU’VE GET AN ARCHITECTURAL PROBLEM

MORE SCIENCE
LESS RELIGION
IN GOD WE TRUST, ALL OTHERS BRING DATA

For a discipline that’s based in the sciences, practitioners of
computer science have an awful lot of religious debates

Just because someone “doesn’t think that change will make a
difference” doesn’t mean we shouldn’t try it - “prove it”

INNOVATE
Just because nobody else is doing something doesn’t mean it’s a
bad idea

A lot of large enterprise process-driven development assumes
that nothing is ever new and yesterday’s solutions are good
enough for tomorrow
• These guys are easily displaced by a competitor who innovates

THE LANGUAGE OF BUSINESS

SELLING IDEAS TO STAKEHOLDERS
Engineers and architects need to communicate their
architectural vision to all stakeholders - if you can’t speak their
language that’s your problem

Business stakeholders typically make decisions based on
utilization of time, money, and other scarce resources;
economic reward; and risk

BUILD VS. BUY
A HERETIC’S OPINION
OPERATION VS. DEVELOPMENT

At scale, the cost of operating and maintaining a system quickly
dominates the cost of developing it
If you have smart, passionate engineers (who you think will stick
around for a while) you may be better off building something
yourself vs. using something off-the-shelf
• Your solution only needs to solve your problem - so it will be simpler

• Your solution is developed by you so you’ll know how it works, how to fix it,
and how to extend it

• Your system will have someone internal who is accountable for it - so it will
get fixed when it breaks and bugs can’t be blamed on external developers or
policies

Most of these considerations also apply to build vs. off-the-shelf
open-source software

BEASTIE

SOFTWARE ARCHITECTURE
WHAT MAKES IT GOOD?
GOOD ARCHITECTURE IS

Robust lacking bugs and tolerant of faults

Maintainable easy to maintain and extend

Useful utility, beyond the immediate need

Scalable able to grow in capacity

Common vision direction, strategy

Agile simple enough to refactor easily

Extensible able to grow in features

Responsive performant now and after
expanding or scaling

WARD’S WIKI <C2.COM/CGI/WIKI?GOODARCHITECTURE>

Software architecture is about more than just building
a system that can do a billion requests per second

GOOD SOFTWARE
ARCHITECTURE

PRODUCT
Anticipate and enable change by providing
• Monitoring and metrics hooks

• Mechanisms for aggregating and visualizing data

Let components fail, but make them fail loudly

Just enough security is enough security

Interface over implementation

Simplify and decouple - small layers composed to create cool stuff

In order to create qualify software you must first create
an environment in which quality software can be created

GOOD SOFTWARE
ARCHITECTURE

PROCESS
The right amount is just enough, automate what you can

If it’s important, measure it, and provide timely feedback

If it hurts, do it more

Communicate using concepts, not just code

Play nice with others, if someone else has a problem you have a
problem (though it might be solved by communication)

More science, less religion

BUILD BEAUTIFUL THINGS
IF THERE IS ONE THING YOU DO...

VITRUVIUS’ “DE ARCHITECTURA”
Earliest surviving written work on the subject of architecture

A good building should satisfy three principles [WIKIPEDIA]

• Durability it should stand up robustly and remain in good condition

• Utility it should be useful and function well for the people using it

• Beauty it should delight people and raise their spirits

BEAUTY
Programming is a art, and good software should be beautiful

Beauty is the ultimate defense against complexity

People exposed to your software should be delighted, and their spirits should be
raised, if that’s not the case you’re doing it wrong
• Includes users, stakeholders, programmers, operators, sales staff, competitors, customer

support, quality assurance, and many others

Hard to define, but you know what I mean

QUESTIONS?

MIKE MALONE
LEAD ARCHITECT
mike@simplegeo.com
@mjmalone

