VOIt The NewSQL database for high velocity applications

New Age Transactional Systems —
Not Your Grandpa's OLTP

Ryan Betts
Sr. Software Engineer, VoltDB
rbetts@voltdb.com / @ryanbetts

Con

Who's making fun of Grandpa’s DB? ocon

1“ 17
'l

We got your back, Mr.
Codd.

]
g
. ¥ 4

VoltDB 2

Are there crystals involved? Con

New age OLTP
NoSQL
NewSQL

More than marketing?

N ewSQL Con

“...shorthand for various new
scalable high performance db
vendors”

Matthew Aslett / The 451 group
April, 2011

http://blogs.the451group.com/information _management/2011/04/06/what-we-talk-
about-when-we-talk-about-newsqgl/

VoltDB -

N ewSQL Con

“...relational semantics with NoSQL
sca/ability”®

Me
November 16th,

Con

Relational NoSQL

ACID Cloud deployable
Transactions Distributed data
SQL Scale-out

Schema Low cost profile

Con

NewSQL v. Legacy RDBMS

Tradeoffs differ by vendor

Analysts. Me. Whoever. Con

Maybe famous academics have more
credibility?

SIGMOD 2008

Con

OLTP Through the Looking Glass, and
What We Found There

Stavros Harizopoulos
Daniel J. Abadi
Samuel Madden
Michael Stonebraker

http://nms.csail.mit.edu/~stavros/pubs/OLTP sigmod08.pdf

Brilliant! Con

Computers are different from 1970’s
- Cheaper
- Lots of main memory
- Multi-core

Applications are different from 1970’s
- Web and middleware: not data entry
- Latency sensitive “real time” apps.

Overhead in the Shore DB Con

Legacy overhead

- 162% 3.5M -
16M - Btree
‘ O 3o -
1.4M - 11|.9% . ' 3
] ogging tr
o 12M] [163% 2.5M 1 . €es
2 | . .
-% 1.0M 4 locking 3 20M - locking -Oggl ng
5 { [42% © .
£ - > 10.2%
g 8M - |atching @) 15M - Iatching -OCkI ng
= 1 ' 29.6% .
oM [P+ _atching
M buff 1.0M 4 buffer
- uffer manager Buffer Cache
1 |manager 5\ -
2M - 12.3%
1[6.8%

Figure 8. Instructions (left) vs. Cycles (right) for New Order.

TPC-C NewOrder and Payment Con

Full overhead (in memory, no log fsync):
1,700 TPS.

Optimal (measured via prototype):
46,500 TPS.

VoltDB: 1M SQL statements / sec.
50k-180k TPS per node on current hardware

Are these kids on to something? Con

Many alternative architectures

Memory resident databases
Clustered databases

Log-less databases

Single threaded databases
Transaction-less databases
Eventually consistent systems

Analysts. Me. Academics. Con

What’s the rest of world have to say about
NewSQL and New age OLTP?

Why?

Why. Con

Contemporary workloads exceed the
capability of legacy database architectures

Do you have this problem? Con

You have a few choices.

Do you have this problem? Con

Choice #1

lgnore it. Maybe it just isn’t that important.

Do you have this problem? Con

Choice #2

Shard a legacy system. You might regret
this choice.

Manage your own sharding.

Your own transactions.
Operational overhead many nodes.
Poor per-node performance.

Do you have this problem? Con

Choice #3

NoSQL: Free coffee cups, laptop stickers
AND it shards for me!

Do you have this problem? Con

Choice #4

NewSQL: | like new things. Sign me up.

Do you have this problem? Con

NewSQL vs. NoSQL: what are the
important decision factors.

NoSQL strengths Con

Raw availability vs. consistency and (ACID)
durability.

Journal oriented or commutative writes.

Schema flexibility (continuously deployed
web apps?)

NewSQL strengths Con

ACID semantics.
Especially multi-key ACID.
Transactions are necessary.

Rich queries. Non-trivial atomic operations.

Note the commonalities Con

Cloud friendly.

Scale-out. Horizontal scaling.

Low cost profile.

New age OLTP use cases Con

Example workloads that favor the NewSQL
side of this decision matrix

Use case: Online Gaming Con

Game state tracking is often transactional.

State must be durable: what was observed
as done must stay done.

“Sharding games detracts from the
universality and player experience.”

Use case: Advertising Tech Con

Near real time (not batched) A/B testing:
Stream of campaign interactions (clicks).
Aggregated multi-key reads of results.
Real time feedback in to ad composition.

Ad display decision making:
Input demographics & run business logic.

Record choices.

Use case: Financial Trade Apps Con

Process 100k to 1M+ inputs per second:
Calculate outstanding positions/risk.
Measure portfolio compliance (alert).

Measure performance by sub-groups
(report).

Real time web apps Con

Durable session caches.

Reduce latency of feedback to web-tier.
Web -> log -> OLTP analytics -> Web

Telco Con

Near real time account status.

Prepaid account alerting.
Roaming / data plan alerting.
Real time account balance inquiries.

Network monitoring Con

Endpoint monitoring for attack profiles.
Monitoring traffic flows.

Operational dashboarding.

Sensor readings

De-dupe multiple readings.

Filter.

Alert on location.

Cross sensor aggregates.
Leaderboarding.

Con

Application Use Cases

Financial trade

e Capital markets
monitoring

Telco call data
record management

Call initiation request

Inbound HTTP
requests

\Website analytics,
fraud detection

Online gaming

I Online game play

Real-time ad

Digital ad
trading systems

exchange services

Mobile device
location sensor

Wireless location-

based services

Werite/index all trades,
store tick data

Real-time authorization
Visitor logging, analysis,

alerting

Rank scores:
eDefined intervals
*Player “bests”

Match form factor,
placement criteria, bid/ask

Location updates, QoS,
transactions

Con

Show consolidated risk
across traders

Fraud detection/analysis

Traffic pattern analytics

Leaderboard lookups

Report ad performance
from exhaust stream

Analytics on transactions

A picture is worth a thousand bullets... ocon

REPORTING
DASHBOARDS
REAL TIME DECISIONS DEEP ANALYSIS
(ms of latency) (seconds of latency and up)
Incoming Events Cooked Events

Velocity Engine : : : Analytic Store/Engine
O O O O O Gigabytes of State Terabytes and Up

VoltDB -

Con

The Giant
Scoreboard in the Sky

Counting is Hard: American Idol Edition ocon

N contestants on some reality talent show
Vote over the phone and count votes per contestant

= Option 1: Accept that you're not going to be perfectly accurate,
and that it might be difficult to bound how not accurate.

= Option 2: Buffer batches of votes for a while to amortize the
cost of using external locks. The real-time count for a

contestant is a count(*) on live buffers plus the roll up of preuv.
buffers.

= Option 3: Support isolated, atomic read-then-update for fault-
tolerant counters (at very high throughput).

Counting is Hard: Requirements change

N contestants on some reality talent show
Vote over the phone and count votes per contestant
Limit voters to X number of votes

BEGIN (PHONE, CONTESTANT)
Check how many votes a phone number has.
If too many, return.
Otherwise atomically increment the votes for the phone
number and for the contestant.

COMMIT

Con

... d IOt Con

= N contestants on some reality talent show.
= Vote over the phone and count votes per contestant.
" Limit voters to X number of votes.

= Allow voters who ve signed up for the email list to vote
twice as many times.

= Don't allow voters to vote twice in the same minute.

= Send voters an SMS text message after their 37 vote.
DON'T SEND TWO.

" Provide a live dashboard of contestant scores by geo.
= Record votes past the limits, but don’t count them.

VoltDB 30

User feedback

What do you hear when the right problem
Is paired to the right tool?

Con

User feedback Con

If you need transactions, building them
yourself is painful.

Using a system with transactions will cut
development time and increase
correctness.

User feedback Con

Per-Node performance matters.

Can support naive solutions.

MySQL + memcached + tuning + SSD +
cleverness gets you a lot. But a NewSQL system
might be nearly idle on the same workload.

User feedback Con

Per-Node performance matters.

Enables cloud deployment. More
predictable 1/0. Reduces cloud leasing

costs.

Enables you to balance scaling up vs. out.

NewSQL product similarities? Con

Techniques differ widely. From single
threaded + transactional procedures to

MVCC to alternate MySQL storage engines.

Common: (1) SQL as query language. (2) ACID
transactions. (3) Non-blocking concurrency control. (4)
per-node performance (5) horizontal scale-out.

Conclusions Con

NewSQL can be differentiated from NoSQL
and from legacy RDBMS.

Some workloads favor NewSQL:
- Rich query-ability
- ACID transactions
- High velocity inputs
- Multi-key aggregation

Questions & Answers
Thanks!

rbetts@voltdb.com / @ryanbetts

