
Dealing with performance
challenges

Optimized Data Formats

Sastry Malladi
eBay, Inc.

eBay Inc. confidential 2

Agenda

Ø API platform challenges

Ø Performance : Different data formats comparison

Ø Versioning

Ø Summary

eBay Inc. confidential

Fun facts about eBay

Ø  eBay manages …
Ø Over 97 million active users
Ø Over 2 Billion photos

Ø eBay users worldwide trade on average
$2000 in goods every second ($ 62 B in
2010)
Ø eBay averages 4 billion page views per
day
Ø eBay has over 250 million items for
sale in over 50,000 categories
Ø eBay site stores over 5 Petabytes of
data
Ø eBay Analytics Infrastructure
processes 80+ PB of data per day
Ø eBay handles 40 billion API calls per
month

In 40+ countries, in 20+ languages, 24x7x365

>100 Billion SQL executions/day!

eBay Inc. confidential

APIs / Services @eBay

Ø  It’s a journey !

Ø  History
Ø  One of the first to expose APIs /Services
Ø  In early 2007, embarked on service orienting our entire

ecommerce platform, whether the functionality is internal or
external

Ø  Support REST + SOA
Ø  Have close to 300 services now and more on the way
Ø  Early adopters of SOA governance automation

•  Technology stack
–  Mix of highly optimized home grown + best of breed open source

components , integrated together – code named Turmeric
–  Open sourced @ http://ebayopensource.org

4

eBay Inc. confidential

Types of APIs

Ø SOA
Ø  Formal Contract, interface (WSDL or other)
Ø  Transport / Protocol agnostic (bindings)
Ø  Arbitrary set of operations
Ø  Code generation is typically always involved
Ø  Meant for sophisticated application developers

Ø REST
Ø  Based on Roy Fielding’s dissertation
Ø  Web/Resource oriented
Ø  Suits well for web based interactions
Ø  Piggy backs on HTTP verbs : GET, POST, PUT, DELETE
Ø  No formal contract
Ø  Hypermedia / Discoverability /Navigability
Ø  Ease of use

Most external APIs tend to be REST based for ease of use and simplicity

eBay Inc. confidential

Data formats

Ø  The Web API request/response messages have to exchange messages in
commonly understandable data formats, independent of the programming language.
XML, JSON are two of the most popular formats.

Ø Over the years, these data formats continued to evolve and more formats are
popping up every now and then, each one claiming to have its own advantages.

Ø When the API is exchanging messages with external clients, interoperability and ease
of use are very important and hence you would commonly use JSON/XML.

Ø But when exchanging messages with internal clients, it may support additional
optimal formats, for performance reasons.

Ø How do we support these evolving formats, without having to require clients/servers
to rewrite their code. Turmeric framework and provides this architecture and support
many data formats out of the box.

Ø  There is a cost to serialize and deserialize objects (in whatever language your client/
server is implemented) into these wire data formats.

Ø  The question is, how do we reduce this cost ? What is the best format to use in what
circumstances ?

6

eBay Inc. confidential

API platform and design challenges

Ø API Platform challenges
Ø Performance : Serialization / Deserialization cost
Ø Data formats evolution
Ø Versioning
Ø Hypermedia support
Ø Providing/generating documentation
Ø Security

Ø API design challenges
Ø Ease of use
Ø  Interoperability
Ø Backward compatibility
Ø Granularity

7

eBay Inc. confidential 8

Turmeric : Pluggable Data Formats Using JAXB

(de)serializer factory

(Request/Response) Message

Cache (de)serialized objects

Calls from handlers (pipeline)
Or from Req/Resp dispatchers

XML NV JSON Binary
XML

Stax parsers
for each data format

Others

(de)serialize
(incoming)outgoing message

getSerializer/
getDeserializer
(based on the type)

XML NV JSON Binary
XML

Others
Pluggable (via config)
Uniform JAXB based
(de)serializers

1

2

3

4

5

eBay Inc. confidential 9

Turmeric : Native and uniform (de)serialization

XML

Other
formats

JSON

NV

A single
Instance of
Service Impl

Java
objects

Passed to
pi

pe
lin

e
XML
NV

JSON

Directly
deserialized
into

SOA framework

others S
er

/D
es

er
 m

od
ul

e

Uniform interface
XML-based
serialization

No intermediate format,
Avoids extra conversion

Pluggable formats

eBay Inc. confidential 10

Agenda

Ø API platform challenges

Ø Performance : Different data formats comparison

Ø Versioning

Ø Summary

eBay Inc. confidential

Performance Challenges

Ø The solution to plugin different data formats (XML, JSON, NV, FastInfoset)
seamlessly under JAXB works great.

Ø However, with these formats, we observed latency issues
Ø  For large payloads and high volume environments, serialization and

deserialization cost is significant and not acceptable
Ø Size of the serialized message also is significant leading to network bandwidth

costs

Ø Alternatives
Ø  Looked at true binary formats like Protobuf, Avro and Thrift
Ø  They looked very promising in terms of serialization and deserialization times

11

eBay Inc. confidential

Challenges with the alternative formats

Ø Each of these formats have their own schema/IDL to express the message
definitions

Ø Not every format supports all the schema types and structures.

Ø They each have a codegen mechanism that generates corresponding bean
classes, which are NOT necessarily compatible with any existing classes

Ø Testing : Simulating a given message sized structure uniformly across all
formats isn’t trivial

12

Note : BTW, there are some existing benchmarks for
comparing some of these formats on the web (
http://code.google.com/p/thrift-protobuf-compare/wiki/
Benchmarking) - But these benchmarks don’t test different
payload structures and sizes

eBay Inc. confidential

Formats tested

Ø XML

Ø JSON (various implementations – Jackson, Jettison, Gson)

Ø FastInfoSet

Ø Protobuf

Ø Protostuff

Ø Avro

Ø Thrift

Ø MessagePack

13

eBay Inc. confidential

Areas of comparison

Ø Serialization / Deserialization cost

Ø Network bandwidth (serialized message size)

Ø Schema richness (support for types that we need)

Ø Versioning

Ø Ease of use

Ø Backward/Forward compatibility

Ø Interoperability

Ø Stability / Maturity

Ø Out of the box language support

Ø Data format evolution – Velocity of changes

14

eBay Inc. confidential

Benchmark context

Ø Goal
Ø Understand the best optimized formats for reduced serialization/deserialization/

bandwidth (size) cost
Ø Understand the overall best format to use, considering other factors like ease of

use, versioning, schema richness, stability, maturity, etc.

Ø Non-goal
Ø Each of these formats have their own RPC mechanism, and it is not our goal to

evaluate or use that.

Ø Benchmark
Ø Simulated Message structure, tailored to the desired size

Ø  With 4 levels of nested tree structure (configurable), containing all representative types
Ø  Randomness introduced, to simulate distinct data for each message instance

Ø Environment
Ø  Everything in the same JVM, so pure serialization/deserialization time – no network cost
Ø  MacBook Pro : OS : 10.6.7, Java 6

Ø  2.66 GHz i7 processor, 8GB RAM

Note : Everything here needs to be taken as relative numbers – don’t pay too
much attention to the absolute numbers

15

eBay Inc. confidential

How they compare - Functionally

16

Protobuf Avro Thrift

Ø Own IDL/schema
Ø Sequence numbers for each

element
Ø Compact binary representation

on the wire
Ø Most XML schema elements

are mappable to equivalents,
except polymorphic constructs,
enums, choice etc.

Ø Inheritance through
composition

Ø No attachment support
Ø Versioning is similar to XML, a

bit more complex in
implementing due to sequence
numbers

Ø Originally from Google, has
been around for a while –
current version – 2.4

Ø Available (officially) in Java, C
++, Python

Ø JSON based Schema
Ø Schema prepended to the

message on the wire (dynamic
typing)

Ø Supports dynamic as well as
static typing

Ø Compact binary representation
on the wire

Ø Most XML schema elements
are mappable to equivalent,
except polymorphic constructs.
Work around exists for tree
like structures

Ø Inheritance through
composition

Ø No attachment support
Ø Versioning is easier
Ø Originally developed as part of

the Apache Hadoop Family,
current version 1.5

Ø Available in C, C++, C#, Java,
Python, Ruby, PHP

Ø  Own IDL/schema
Ø  Sequence numbers for each

element
Ø  Compact binary

representation on the wire
Ø  Most XML schema elements

are mappable to equivalents,
except polymorphic
constructs and tree like
structures

Ø  Inheritance through
composition

Ø  No attachment support
Ø  Versioning is similar to XML,

a bit more complex in
implementing due to
sequence numbers

Ø  Originated by Facebook –
curent release 0.7.0, but has
been around for a while

Ø  Available in pretty much all
languages

eBay Inc. confidential

How they compare - Functionally (contd.)

17

Protostuff MessagePack FastInfoset
Ø Everything is same as

protobuf, with additional
features like streaming and
support for existing pojos

Ø Done by some individual
committer

Ø Version 1
Ø Can write to JSON/XML

formats

Ø Has no schema
Ø Compact binary representation

on the wire
Ø No code generation
Ø All fields in the message

needs to be public (in java)
Ø No tree like structures
Ø No attachment support
Ø Not much support for

versioning
Ø Available in c/c++, Ruby,

Python, Perl, Node.JS
Ø Started by an individual,

relatively recent

Ø XML schema
Ø Everything same as XML,

except that the representation
on the wire is semi-binary

Ø Based on ISO/ITU standard
using ASN.1 notation

eBay Inc. confidential

Message structure (equivalent in different formats)

18

<complexType name="XMLMessage" ">
 <sequence>

 <element name="integer" type="xsd:int" minOccurs="1” maxOccurs="1" />
 <element name="astring" type="xsd:string" minOccurs="1” maxOccurs="1" />
 <element name="adouble" type="xsd:double" minOccurs="1” maxOccurs="1" />
 <element name="strings" type="xsd:string" minOccurs="1” maxOccurs="Unbouned" />
 <element name="selfRef" type="tns:XMLMessage" minOccurs="1” maxOccurs="1" />
 <element name="selfRefList" type="tns:XMLMessage" minOccurs="1”

maxOccurs="Unbounded" />
 </sequence>
</complexType>

message ProtobufMessage {
 optional int32 integer = 1;
 optional string astring = 2;
 optional double adouble = 3;
 repeated string strings = 4;
 optional ProtobufMessage selfRef = 5;
 repeated ProtobufMessage selfRefList = 6;

}

XML

Protobuf

eBay Inc. confidential

Message structure (equivalent in different formats) –
contd.

19

"types" : [
 {
 "type" : "record",
 "name" : "AvroMessage",
 "fields" : [
 {"name" : "integer", "type" : "int" },
 {"name" : "astring", "type" : "string" },
 {"name" : "adouble", "type" : "double" },

 {"name" : "strings", "type": [{"type": "array", "items": "string"}, "null"] },
 {"name" : "selfRef", "type" : ["AvroMessage", "null"]},

 {"name" : "selfReflist", "type" : [{"type": "array", "items":
"AvroMessage"},"null"]}
]
 }
]

struct ThriftMessage2 {
 1: optional i32 integer,
 2: optional string astring,
 3: optional double adouble,
 4: list<string> strings,
}

struct ThriftMessage {
 1: optional i32 integer,
 2: optional string astring,
 3: optional double adouble,
 4: list<string> strings,
 4: optional ThriftMessage2 selfRef,
 5: optional list<ThriftMessage2t> selfRefList,
}

Avro

Thrift

eBay Inc. confidential

Benchmark runs

Ø Each data format test is run in a separate JVM instance

Ø Each test has 1000 iterations

Ø Each payload size run is also done in a different JVM.

Ø The message content is random for each instance, to simulate real world
payloads.

Ø 95th percentile average is measured.

20

eBay Inc. confidential

Serialization time – 95th percentile

21

S
e
r

t
i
m
e

i
n

m
i
c
r
o

s
e
c

Ø At lower payload sizes (up to 100K)
Ø protobuf, protostuff, MsgPack and Avro are the best in that order and
are comparable.

Ø At higher payload sizes (1MB)
Ø Protostuff is best, followed by JacksonJSON, protobuf and Avro
Ø Avro and Protobuf are more or less the same
Ø JacksonJSON, while worse than protobuf at smaller payloads, is better at
higher payloads.
Ø JettisonJSON and GsonJson are out of whack

Payload size

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1K

10K

100K

1MB

eBay Inc. confidential

Deserialization time – 95th percentile

22

Payload size

D
e
s
e
r

t
i
m
e

i
n

m
i
c
r
o

s
e
c

Ø For deserialization, protobuf is the best of all, followed
by Avro, Protostuff and JacksonJSON

Ø Thrift and MsgPack, while good at lower payloads,
deteriorate at higher payloads.

0

10000

20000

30000

40000

50000

60000

1K

10K

100K

1MB

eBay Inc. confidential

Total Time – 95th percentile

23

Payload size

T
o
t
a
l

t
i
m
e

i
n

m
i
c
r
o

s
e
c

Ø  Overall, for higher payloads, best formats :
Ø  Protostuff, protobuf, Avro and JacksonJSON in that order

Ø  Overall, for lower payloads, best formats :
Ø  Protostuff, protobuf, Thrift and Avro

0

50000

100000

150000

200000

250000

1K

10K

100K

1MB

eBay Inc. confidential

Serialized Payload size

24

Ø  XML, Thrift and MsgPack don’t seem to have any edge, i.e., no
reduction in size

Ø  All other formats have reduced serialized size that vary
between 30-40% reduction gain.

Payload size

0

200000

400000

600000

800000

1000000

1200000

1400000

1K

10K

100K

1MB

eBay Inc. confidential

Here is what you have been waiting for …

25

Our benchmark results indicate that …

Ø  Considering all the factors (performance,

interoperability, schema richness, usability)
Jackson JSON is overall the best one to use

Ø  But if performance is an absolute must, and can

compromise on the ease of use and schema
limitations, interoperability, then Protostuff is
the best one to use.

eBay Inc. confidential 26

So how did we leverage this ?

eBay Inc. confidential

Runtime

General (de) serialization flow

Format specific
schema
Compiler

Format
specific

deserializer

Format
specific
serializer

Service
Implementation

Input
Objects

Output
Stream

Format specific
Java Classes

Code Generation

Request
Object(s)

Response
Object(s)

Format specific
Java Classes

generate

generate Delegation
classes

delegates
extends

Delegation
objects

Delegation
objects

eBay Inc. confidential

Keeping the same existing interface – Message schema
expressed in XML

28

 Format specific
delegation Object

format byte stream

 Format specific
delegation Object

Client Side Server Side

Client Application Service Implementation

Request as JAXB
Bean

Request as JAXB
Bean

Tu
rm

er
ic

 F
ra

m
ew

or
k

R
un

tim
e

A
pp

lic
at

io
n

Sp
ac

e

Serialization	 Deserialization	

Respective Message schemas can be queried using “?proto”, “?avro” etc.

eBay Inc. confidential

Turmeric : Pluggable data format specific artifact
generators

Stubs
Generator

Skeleton
Generator

Config
Generators

Type
mappings
Generator

Format specific
delegation

class
Generator

WSDL/
XML JAXB

Beans

JAXB Beans
+ Interface

WSDL/
XML

Extensible artifact generators

Service Project Artifacts

Parsed WSDL &
Compiled Artifacts

WSDL/
XML

Code Generation
Engine

wsdl2java

JAXB-RI

eBay Inc. confidential

Restful API

•  The same concept of plugging in different data formats (media types) is
done for restful APIs

•  JAX-RS specification allows plugging in different media type providers
–  MessageBodyReader (Deserializer) and MessageBodyWriter (Serializer)

•  Content negotiation can be done using the standard HTTP headers

•  A small demo of hypermedia and a good rest API (time permitting)

30

eBay Inc. confidential

How to use this and leverage protobuf, for example ?

•  Get Turmeric
https://www.ebayopensource.org/index.php/Turmeric/HomePage

•  Generate service and client with Turmeric Eclipse Plugin
–  If compatible, all protoc and adapter classes are generated automatically

•  Implement the service and client application code as usual

•  At runtime, set request/response header format to use Protocol Buffers

•  You are all set!

31

eBay Inc. confidential 32

Agenda

Ø API platform challenges

Ø Performance : Different data formats comparison

Ø Versioning

Ø Summary

eBay Inc. confidential

Versioning

Ø Versioning is a perennial problem in APIs / Services world

Ø Change is inevitable and therefore APIs (their requests and responses) do
change from time to time

Ø There are no standards to do versioning

Ø The question is, what is the best approach, which is simple and
understandable by the consumers ?

Ø We followed this convention
Ø Version internally has 3 components : Major, Minor and Maintenance (e.g 1.2.1)

Ø  Maintenance version is bumped up for any bug fixes (no interface change)
Ø  Minor version is bumped up for any backward compatible interface changes

Ø  Major version is bumped up for any backward incompatible changes (or for major new
functionality)

Ø  In any given major version, the latest minor version is always compatible with all the
previous minor versions.

Ø  We have some semi-automated tools to enforce these guidelines

33

eBay Inc. confidential

Versioning (contd.)

Ø But externally, we don’t want to expose all of that.
Ø  Version externally needs to see only component : Major (e.g. V1 or V2)

Ø  Standardized format

Ø  http[s]://svcs.ebay.com/<domain>/<service>/V? (versioning the domain) OR

Ø  http[s]://svcs.ebay.com//<domain>/V?/<service> (Versioning the service/resource)

Ø  e.g. : /finding/V?/Items?keyword=ipod

Ø  Depending on which data format is used, implementation difficulty varies, as touched
upon during the data format comparisons.

Ø  Resource Versioning for Rest APIs follows similar pattern

Ø  http[s]://host:port/<domain>/V?/<Resource> or

Ø  https[s]://host:port/<domain>/<Resource>/V?

Ø  Versioning can also be negotiated using the Accept header (accept parameters)

34

eBay Inc. confidential 35

Summary

Ø API platform itself has various challenges, in addition to the API
design challenges

Ø Performance, Usability, Versioning and Interoperability are some of
the key aspects to consider

Ø APIs are used both internally and externally, and the type of
challenges vary between internal and external

Ø Binary data formats offer performance advantages, but bring along
certain restrictions and challenges

Ø We have done a benchmark study to understand what formats are
best under what circumstances and concluded that JSON
(specifically jackson parser) is good for majority of the use cases
and for high performance critical services, protostuf is the best

Ø Versioning is another major challenge that we dealt with simple
conventions

Ø Some of the innovations we have done at eBay are open sourced
under Turmeric project

eBay Inc. confidential

Q & A

Thank you

smalladi@ebay.com

eBay Inc. confidential 37

Back up slides

eBay Inc. confidential

Serialization - 95th percentile data

38

1K	 10K	 100K	 1MB	
Protobuf	 79	 86	 435	 7332	
Protostuff	 63	 72	 238	 3288	

JacksonJSON	 944	 862	 1184	 5249	
Avro	 396	 340	 485	 7388	
ThriE	 77	 137	 1026	 19875	
XML	 3340	 3304	 4545	 13866	
FI	 432	 487	 1789	 17222	

MsgPack	 60	 105	 898	 18677	
GsonJSON	 647	 802	 3833	 54948	

JeMsonJSON	 4100	 4808	 21126	 179256	

eBay Inc. confidential

Deserialization – 95th percentile data

39

1K	 10K	 100K	 1MB	
Protobuf	 51	 52	 200	 2554	
Protostuff	 59	 54	 371	 5398	

JacksonJSON	 1125	 1051	 1325	 5872	
Avro	 251	 217	 285	 3437	
ThriE	 96	 92	 640	 12086	
XML	 4012	 3927	 5553	 18631	
FI	 3126	 3130	 3983	 16494	

MsgPack	 112	 108	 706	 12764	
GsonJSON	 704	 836	 3332	 48476	

JeMsonJSON	 3358	 3591	 7302	 47625	

eBay Inc. confidential

Total time – 95th percentile data

40

1K	 10K	 100K	 1MB	
Protobuf	 130	 138	 635	 9886	
Protostuff	 122	 126	 609	 8686	

JacksonJSON	 2069	 1913	 2509	 11121	
Avro	 647	 557	 770	 10825	
ThriE	 173	 229	 1666	 31961	
XML	 7352	 7231	 10098	 32497	
FI	 3558	 3617	 5772	 33716	

MsgPack	 172	 213	 1604	 31441	
GsonJSON	 1351	 1638	 7165	 103424	

JeMsonJSON	 7458	 8399	 28428	 226881	

eBay Inc. confidential

Serialized Size – 95th percentile data

41

1K	 10K	 100K	 1MB	
Protobuf	 3106	 5326	 58655	 578692	
Protostuff	 3105	 5325	 58656	 578553	

JacksonJSON	 3739	 6410	 70536	 695831	
Avro	 3003	 5149	 56658	 558931	
ThriE	 1505	 13956	 130564	 1296773	
XML	 5814	 9929	 108684	 1071478	
FI	 3403	 5780	 62827	 619291	

MsgPack	 1708	 11962	 111939	 1112197	
GsonJSON	 3708	 6365	 70120	 691815	

JeMsonJSON	 3377	 5768	 63186	 622847	

