
Max Protect:
Scalability & Caching at ESPN.com

About the speaker

• Sean Comerford - Site Architect, ESPN.com!
– Previous gigs at MLB.com, Sun Micro and IBM"

•  sean.comerford@espn.com , @scc1976 on Twitter "
• First time at QCon!"

2

Agenda

• High Level Architecture"
• Technology Deep Dive"

– ESPN.com Re-Arechitecture"
• Cache Push"
• SOA"

– Dynamic Content System"
– Live Scores"
– Personalization"

• Coming Attractions & Help Wanted"
• Q&A"

3

ESPN.com Facts & Figures

•  Internetʼs #1 sports web site"
• Top 10 (all sites) in terms of viewership"
• Almost entirely Java based"
• Serves 10s of thousands to 100s of thousands of requests

per second with a relatively small number of servers"
• ESPN digital properties include"

– ESPN.com"
– Fantasy games"
– Mobile"
– WatchESPN"
– ESPN the Ocho"

• No, not yet but others (Deports, W, HS, etc)"

4

ESPN.com Mission

• Serve sports fans anytime, anywhere on any device"
• Availability & accuracy of the utmost important"

– You wouldnʼt tolerate ESPN going out for 10 seconds
on your TV"

– You shouldnʼt tolerate it for ESPN.com either"
• Bring fan all stats and scores + more and deeper content"
• ESPN has a deep appreciation for technology…"

– But weʼre not a technology company – weʼre a media &
content provider"

5

6

Page Caching Framework

• High performance page and fragment caching"
• Replicated / peer fetch enabled"
• Per URI, TTL based expiration"
• Blocking and non-blocking source fetch"

– Low TTL, block for scoreboard à highest accuracy"
– High TTL, donʼt block for schedule à not updated

frequently"
• Automatically demotes unresponsive source servers"
• Runs on cheap / low end hardware"

– 100s of thousands of requests to load balancer"
– 100s of requests to actual app server"
– 10 MLB servers instead of 50 à save big $$$"

7

8

ESPN.com Data Ingest

• Most stats come from 3rd party vendors or the pro leagues
themselves"

• Some stats entered by ESPN stats team"
• Almost all are overwritten nightly with “official” stats from a

3rd party"
• Same stats that power .com also power TV"

– But not accessed in same way"
• Relatively speaking, message rates are not very high…"
• But complicated by fact almost all in game events need to

be processed in order"

9

10

ESPN.com Application Architecture

• Proprietary, high performance templating framework"
– Think stripped down JSP with built in Spring-like

service injection framework"
– Page latency very important for scaling and fan

experience"
• Slow page à out of date scores "
•  Limit what web devs can do so they donʼt take down

the site"
– Looking at switching to Grails"

• Performance not great in V1.x"
•  Looking into V2 which is better"

11

ESPN.com Application Architecture:
Application Level Caching

• Historically a “table in memory” view of DB"
– No composition so tons of logic in templates to cobble

together a boxscore from 25 different tables"
• Replicated (per server) in memory HashMap cache"

– Cache expiration by DB sending expire msg à webapp
fetching again from DB"

– Works and simple but On performance "
• DB becomes bottleneck as # of servers goes up

(expire stampede)"

12

Re-Architecting ESPN.com

13

Re-Architecting ESPN.com

• Replace existing per sport data model with new “common”
sports model"

– Common APIs for all data"
– Common APIs for lookup of that data"
– Sport specific extensions where necessary"

• Rich JPA/Hibernate based domain model allows us to:"
– Store/retrieve NFL game same as MLB same as..."

• Simplify aggregation & display of all sports data"
– Automagically create RESTful end points via JAX-RS"
– Easily build a more service oriented architecture"

• EJB w/ Hessian encoding + client cache for Java"
• REST for non-Java / lower performance"

14

Re-Architecting ESPN.com
Current State of SOA

15

Re-Architecting ESPN.com
More SOA-like

• Decouple our services – all new apps can work:"
•  Locally (same JVM)"
• Via Java remoting (EJB 3 w/ custom serialization)"
• RESTfullly (via JAX-RS)"

– Can change with no modification to front end code"
• All three methods leverage same persistence & DAO layer"
• Have successfully converted a few of our major apps"

– Leveraging generics and code gen to expedite process
of converting the rest"

• Move away from having per sport back end service"
– Create one service for all sports"
– Modular / flexible front end presentation to have  

a single scoreboard for all sports"

16

17

ESPN.com	

Application	

Architecture V2	

18

ESPN.com	

App Arch	

V3	

Re-Architecting ESPN.com
Cache Push

• Moving to cache push model"
• Our data ingest process has already converted incoming

XML message into JPA POJO"
– Inefficient to have DB send expire"
– MDBs and webapp both talk POJO so just push it"
– Remove biggest bottle neck (our DB) from the equation"

• All live event data gets delivered to the web application by
ingest (MDB) process"

– Eliminates millions of DB calls per hour during peak
times"

– Once an application has primed its caches with
historical & meta data, DB could theoretically be turned
off"

19

Deep Dive:
Cache Push

• Using Ehcache as 2nd level cache provider with cache
replication enabled"

• Works great for entity updates"
• BIG PROBLEM: almost everything on .com looked up

via query… !
– Hibernate support for query caching inefficient "
– Canʼt have getPlaysForGame(1234) query banging on

DB all day b/c query caceh only supports TTL or dopey
last update timestamp"

– What to do…. ""

20

Deep Dive:
Cache Push – Query Replication

• Enter the “Query replicator”"
• Basically a rules engine to dictate what queries to update

when an event happens"
– Example: play is inserted for game w/ ID 1234, re-run

the query getPlaysForGame(1234)"
• Configured via XML mappings files that defines"

– What entities to act upon and for which actions (insert,
update, delete)"

– The Java DAO class and method to invoke so query for
affected entity are refreshed in cache"

• Uses standard mappings file XSD and reflection APIs to
work for any use case"

• Run the query ONCE and replicate to all apps"

21

22

JPA/Hibernate ���
Query Replication	

Deep Dive:
Cache Push Demo

•  Letʼs do something fun"

23

Deep Dive:
Dynamic Content System

• GoPublish system used by majority of Disney family of
web sites for content management"

• Consists of two major pieces"
– Content Management Service(CMS)"
– Dynamic Content Service (DCS)"

• Content can be input either manually (a writer types it in)
or via feed consumption (scraping an RSS feed)"

• Customizable support for workflow tasks"
– From basic stuff such as writer enters story but not

published until editor approves…"
– To detailed user management such as Bob is allowed

to create content types but NOT actual content and  
only for NHL"

24

Deep Dive:
Dynamic Content System - CMS

• Content Management Service"
– Stores both published and unpublished content & types"
– Content Editor (CE): GUI for writers to input content

and types "
• Also for basic WYSIWYG layout and formatting"

– Content types are used to group things and in hash
map style look ups"

• Give me all content with type “NFL recap” and event
date of today"

• Example content types include: preview; recap;
frontpage carousel item; "

– Content tagging and aggregation a big focus"
– Backend is standard SQL DB"

25

Deep Dive:
Dynamic Content System - DCS

• Dynamic Content Service"
– Collection of Java and REST APIs for accessing

published content & content types"
– Content can be grouped by environment (ie QA, UAT,

PROD)"
– Java clients get content & type push via serialized

beans when content published to the CMS"
– SOLR search service"
– Backend DB stores serialized Java objects or XML"
– Provides access to MILLIONS of content items with

less than 50 ms latency (generally)"

26

27

ESPN.com / Disney	

Dynamic Content System	

Deep Dive:
Live Scores

• Donʼt want fan to have to reload for scoreboard to update"
• Need client side push of live scores & data"
• Websocket before there were websockets"
• Three primary components"

– Feed template: XML representation of all dynamic
game data"

– Feed Monitor: polls feed template, creates diffs and
stores those as a data “snap shot”"

– Caster client: Flash client that keeps connection to
server open for push of snap shots. Hands snap shots
off to Javascript"

28

29

ESPN.com	

Client Side 	

Push Framework	

Deep Dive:
Personalization

• Fan desire to have personalized content and presentation"
– And have it follow you everywhere (.com, mobile, TV,

etc)"
• Need to build scalable, high performance, distribute cache"

– 200 GB of data now"
– Will likely triple over next year"
– Lookup primarily by ID"
– Map-reduce style needs growing"

• But site is heavily page cached… not conducive to
personalized user experience"

30

Deep Dive:
Personalization Web Service

• Developer client side framework & high performance,
extremely low latency web service"

– Sustained load = 1000s of requests per second per
instance"

– Single millisecond latency"
– Used to build your nav bar on front page which  

gets a TON of traffic"
•  Lots of GC tuning"

– Set large eden sizes and occupancy fractions"

31

32

ESPN.com	

Personalization	

Service	

Deep Dive:
Personalization Demo

• Changing your ESPN.com navigation"

33

Coming Attractions

• Some other cool projects in the works"
– Client side push framework migration to XMPP"

• Deliver more customizable, personalized, dynamic
data feed to fans"

– Evaluating NoSQL solutions for distributed caching
solutions"

• We have a DAO framework that decouples us from
JPA / Hibernate but interested in Hibernate OGM
project other non-relational solutions for Hibernate"

– ESPN APIs Project"
• Provide developer access to ESPNʼs unparalleled

suite of data and content"

34

Ultimate End Goal

• Get the architecture right to provide best fan expierence"
• So we can concentrate on what we do best…"

35

Help Wanted!

• We are hiring!!!!
• Go apply at http://espncareers.com … or better yet talk to

me afterward"

36

Q&A

• Questions?"
• Feedback on anything you heard?"
• Suggestions for ESPN.com features?"
• Click that little happy face for my rating and Iʼll fix your

fantasy football scores!"

37

