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® This is actually Kresten Krab Thorup’s talk, but
he couldn’t attend the conference

® he’s CTO of Trifork

® and an important part of the team
behind the QCon and GOTO conferences

® |I'm covering for him here, giving my
interpretation of his material

® These are (mostly) his slides, I've changed a few
and inserted some of my own
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we're struggling to
handle these with an
pbject minaset!
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Time for a new
revolution?
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What 1s the
right paradigm to
cope with these?
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What 1s the
right paradigm to
cope with these?

Parallel Compilers

Erlang, Actor Models

Functional, Data-Parallel

TRIFORK.
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Actors
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interface Implementation

|6  Graphics from Object-Oriented Programming with Objective C,Apple, 201 | TRIEFORK.
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box

{'put’,X}

010
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box

{‘take’,From} /

{'put’,X}
send(From, X)

O10.s
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box() - empty().

empty() - box
receive
{‘put’, X} -
full(X)
end.

{‘take’, }/

full(X) - {‘put’,X} endl 9

receive
{‘take’, } -
X,
empty ()

O10.s

end.
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box() - empty().

empty() - box
receive
{‘put’, X} -
full(X)
end.

{‘take’, }/

full(X) - {‘put’,X} endl 9

receive
{‘take’, } -
X,
empty ()

end. {‘peek’, b/
send( {ok’, X})

(0104
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box() - empty().

empty(z -
receive
{‘put’, X} -
full(X)
end.

full(Xx) -
receive
{‘take’, } -
X,
empty();
{‘peek’, } -

I {‘ok’, X},

full(X)
end.
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~ empty().

empty() -
receive

{‘put’,

} -

full (X)

end.

full(X) -
receive
{’take’,

} -

empty () ;

{‘peek’,

1 o
I {‘ok’,

full (X)

end.

}s
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Box

= spawn(fun box/0),
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Box = spawn(fun box/0),

Box ! {‘put’, 27},
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Box = spawn(fun box/0),
Box ! {‘put’, 27},

Box ! {‘take’, self()},
receive

Value - print(Value)
end
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API| changes
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Just a gentle reminder ..,
Smalltalk is NOT only its
Syntax or the class library, it
1s not even about classes. I'm
sorry that I long ago coineg
the term "objects" for this
topic because it gets many
people to focus on the lesser
idea.

The big idea js “messaging“ ——
that is what the kernel of
Smalltalk/Squeak 1s all
about. .,

Alan Kay, October 1993
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100.000’s of objects,

are you crazy?
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Sut 1sN't this expensive’”

... heard yesterday

Use Actors!

\
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100.000’s of processes,
silly youl

~\
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“What if the OOP parts of other languages
(Java, C++, Ruby, etc.) had the same behavior as
their concurrency support? What if you were
limited to only creating 500 objects total for an
application because any more would make the
app unstable and almost certainly crash it in
hard-to-debug ways? What if these objects
behaved differently on different platforms?”

Joe Armstrong, creator of Erlang

as quoted in
http://weblog.hypotheticalabs.com/?p=217

basho
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—ffect Contanment

Functional languages
disallow effects

Many object-oriented
styles encourage side
effects.

Actors confine effects

TRIFORK.
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From C++ to Java

From Java to Erlang

Garbage Collection

State Containment

TRIFORK.
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Threaded programs are error prone
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knowledge.
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Let a meta-level do fault handling

Defensive code Is a symptom of a
weak platform (segfaults, memory
leaks, ...)
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ADStractions

Any abstraction (hiding code) is
oroblematic to distribute, persist, etc.

You want to distribute/persist simple data
(as in sgl databases, document stores)

JSON’s popularity is a testament
to this anomaly.
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ADStractions

Any abstraction (hiding code) is
oroblematic to distribute, persist, etc.

You want to distribute/persist simple data
(as in sql databases, document stores) _
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Record, Number, String,
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Simple Values

Tuple, List, Record, Number, String, Binary

Pattern matching is polymorphism for values

—rlang data stores (like Mnesia) just store
values, not bytes or objects.

Too much of my Java programs are
pollerplate code.

39
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'Object” Moadel Anomalies

Thread & Locks

Interfaces with Fixed A

q

PC/

Defensive Code

RMI

o

Bollerplate code for persistence
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Actor "solutions’

Processes W/ state containment

Protocols
Let 1t Fall
Async Messaging

Send & store simple Data

41
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systems.
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\aking reliable
distrouted control systems
N the presence of ernrors

The “secret weapon” for
—ricsson’s market leading,
real-time telephony
systems.

20+ years of experience
to learn from.
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Your Erlang Program

—a Platform Framework
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Kresten Krab Thorup
Erlang Person of the Year, 2010




O1TP Actor Behaviors

Servers

—vent Handlers

Finite State Machine

SUpPEervisors
Networking: TCP, HTTP

49
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Tail Recursion

@ Tail recursion is critical to
programming Erlang processes

@ process enters a function

@ function acts on an incoming
message

® as last action in the function, it calls
itself to handle the next message

basho 50
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loop(State) ->
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loop(State) ->
NState = receive
76 handle messages here,
76 messages may affect State
end,

loop(NState).
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Essence of OTP Behaviors

loop(Callbacks, State) ->
NState = receive
Msg ->
Callbacks:handle(Msg, State)
end,
loop(Callbacks, NState).
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Essence of OTP Behaviors

loop(Callbacks, State) ->
NState = receive
Ml ->
Callbacks:handle | (M| ,State);
M2 ->
Callbacks:handle2(M2,5State);
M3 ->
Callbacks:handle3(M3,5tate)
end,
loop(Callbacks, NState).
0O
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Essence of OTP Behaviors

loop(Callbacks, State) ->
{Next, NState} =
receive
Ml ->
Callbacks:handle_m [ (M ,State);
M2 ->
Callbacks:handle_m2(M2,5tate);
M3 ->
Callbacks:handle_m3(M3,5State)
end,
case Next of
stop -> ok;
..@ _ -> loop(Callbacks, NState) end.
basho 2
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Behavior Loops

® These are the basics

@ Actual OTP behavior loops are much
more sophisticated

® cen_server, gen_fsm, supervisor, etc. all
assume specific callback functions,
checked by the compiler
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real problems that need
to be solved to realize
the potential of cloud
computing
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Async Messaging
State [Fault] Containment
Fault Monitoring







66
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Advice for New Erlang
Users

basho 69



Integration Using Erlang



Integration Using Erlang

@ Integration often involves distribution

basho 70



Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

basho 70



Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

® [rivial access to TCP, UDP

basho 70



Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

® [rivial access to TCP, UDP

® Sync or async, easy event handling

basho 70



Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

e Trivial access to TCP, UDP
® Sync or async, easy event handling

® Application protocol handlers built
using gen_server or gen_fsm

0O
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Integration Using Erlang

@ Often write little networked clients and
servers directly in the erl shell

® Packet decoding and bit syntax sets
Erlang apart from netcat, perl, etc. in
this regard

@ It's like a middleware/coordination DSL

0O
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dbg and Tracing

@ Erlang’s tracing is one of its most
amazing features

@ Learn the dbg module, you’ll use it
every day

@ | have needed the Erlang debugger
only once, | always use dbg instead

basho 72
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Adyvice for

® All that great stuff you've
heard about Erlang? It’s
true

® Simple concurrency and
coordination

® Hot code loading

® Always-available code
tracing

New Users

73

Sound, practical reliability
Easy integration

Enables “production
prototypes’

Open source at
github.com

Language and docs
available at erlang.org

73



Warning:“Let It Crash”

® This philosophy can be hard for non-
Erlangers to buy into

® QA sees a crash in the log, they treat it as
something bad. Always.

@ explaining it was designed that way
doesn’t always fly

® Programmers new to Erlang (or sometimes
not so new) always want to try to handle
the errors instead

0O
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But “‘Let It Crash”
Works

@ Crash and recovery is invaluable for
early adopter customers

® They keep using the system even if
something goes wrong

® Most of the time, they’'re unaware of
the crash/recovery

e With dbg and hot code loading, you
can debug and repair live systems
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But Wait! There’s More

extensive library of useful modules

details of OTP applications, supervision,
code upgrade, hot code loading

ets and dets: Erlang Term Storage (in
memory) and Disk ets (persistent)

mnesia: distributed transactional database

rebar: open source build and dependency
management system

76
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Thread & Locks

Interfaces with Fixed API
Defensive Code
RPC/RMI

Sollerplate code for persistence
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Boilerplate code for persistence
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Multicore, Cloud, Actors

’ * Erlang
Java /

* Erjang
e Akka
Processes w/ state containment

Protocols
L et 1t Fall
Async Messaging

Send & store simple Data
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Programming
Erlang cocmm

Also: http://learnyousomeerlang.com/
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