©

basho

Objects,Anomalies, and Actors:
The Next Revolution

Steve Vinoski

Architect, Basho Technologies

QCon San Francisco 201 |
|8 Nov 201
@stevevinoski
http://steve.vinoski.net/
vinoski@ieee.org

http://steve.vinoski.net
http://steve.vinoski.net

® This is actually Kresten Krab Thorup’s talk, but
he couldn’t attend the conference

® he’s CTO of Trifork

® and an important part of the team
behind the QCon and GOTO conferences

® |I'm covering for him here, giving my
interpretation of his material

® These are (mostly) his slides, I've changed a few
and inserted some of my own

0

basho

90s Object Revolution

90s Object Revolution

Increased

Complexity

90s Object Revolution

Increased

Complexity

Program Structure

90s Object Revolution

Increased

Complexity

Component Reuse

Program Structure

90s Object Revolution

Increased

Complexity

Domain Modeling

Component Reuse

Program Structure

| anguages

Ruby

C++

Smalltalk Java
Simula Objective-C

TRIFORK.
5

1NINKING [00IS

Patterns DDD
UML
00A&D
Ruby
C++
smalltalk Java
Simula Objective-C

TRIFORK.
6

Internet
Increased

Complexity f

R

Domain Modeling

Component Reuse

Program Structure

TRIFORK.

7

More Complexity
Infrastructure made of Software

TRIFORK.

8

More Complexity
Infrastructure made of Software

TRIFORK.

9

More Complexity
Infrastructure made of Software

Fault Tolerance, Availability, QoS

TRIFORK.

9

More Complexity
Infrastructure made of Software

Integration, Coordination
Fault Tolerance, Availability, QoS

TRIFORK.

9

More Complexity
Infrastructure made of Software

Cloud, Multi-Core
Integration, Coordination

Fault Tolerance, Availability, QoS

TRIFORK.

9

we're struggling to
handle these with an
pbject minaset!

More Complexity

Infrastructure m

| ‘_h

Cloud, Multi-Core
Integration, Coordination

Fault Tolerance, Availability, QoS

TRIFORK.

9

Time for a new
revolution?

|0

TRIFORK.

10

Ol)

o 3

Viinat
—eVOIUL

£l
& e
R

11

12

paradigm

paradigm

TRIFORK.
12

12

paradigm

paradigm

TRIFORK.
12

paradigm

normal
science

12

paradigm

TRIFORK.

12

paradigm

observe
anomallies

paradigm

normal
science

12

TRIFORK.

12

paradigm

observe
anomallies

paradigm

normal
science

12

TRIFORK.

12

paradigm

observe
anomallies

paradigm

normal revolutionary
science science

12

TRIFORK.

12

paradigm

observe

anomalies normal

sclence
paradigm

normal revolutionary
science science

12

TRIFORK.

12

What 1s the
right paradigm to
cope with these?

|3

TRIFORK.

13

What 1s the
right paradigm to
cope with these?

Parallel Compilers

Erlang, Actor Models

Functional, Data-Parallel

TRIFORK.

13

|3

Ralph johnson
ugrlang, the Ne o
e Erlang 15 going to he @ ‘i;_the
very important Language - : thm to
1ts main advantage ig that 11U ese?
1S perfectly suited for the
. pulti-core: web services
! future. in fact, it is the
QNLY mature: r ck-solid
1anguade that 1 suitable for
writind highly calable
systems xo run on multicore ers

machines:
. —uva=rarallel

TRIFORK.

13

13

|4

Objects

Actors

TRIFORK.

14

|4

Objects

Actors

TRIFORK.

14

Actors

anomalies

Objects

|4

TRIFORK.

14

—

_ 0bj lf ACtor-Programming
< the new Paradigm,

what are the anomalies
we should see now?

|4

Anomalies In
the object-orented
WONa VIew

interface Implementation

|6 Graphics from Object-Oriented Programming with Objective C,Apple, 201 | TRIEFORK.

—Ncapsulation

TRIFORK.

17

TRIFORK.

18

TRIFORK.

18

X
1
0
-
1
-

18

X
1
0
-
1
-

18

X
1
0
-
1
-

18

TRIFORK.

18

X
18
0
-
18
-

19

X
18
0
-
18
-

19

X
1
0
-
11
-

19

Active Object +
State Machine

mailbox

Active Object +
State Machine

mailbox

Active Object +
State Machine

mailbox

21

Active Object +
State Machine

mailbox

22

box

TRIFORK.

22

box

{'put’,X}

010

TRIFORK.

22

box

{‘take’,From} /

{'put’,X}
send(From, X)

O10.s

TRIFORK.

22

box() - empty().

empty() - box
receive
{‘put’, X} -
full(X)
end.

{‘take’, }/

full(X) - {‘put’,X} endl 9

receive
{‘take’, } -
X,
empty ()

O10.s

end.

TRIFORK.

23

box() - empty().

empty() - box
receive
{‘put’, X} -
full(X)
end.

{‘take’, }/

full(X) - {‘put’,X} endl 9

receive
{‘take’, } -
X,
empty ()

end. {‘peek’, b/
send({ok’, X})

(0104

24

TRIFORK.

24

box() - empty().

empty(z -
receive
{‘put’, X} -
full(X)
end.

full(Xx) -
receive
{‘take’, } -
X,
empty();
{‘peek’, } -

I {‘ok’, X},

full(X)
end.

25

{'put’,X}

box

(0104

{'take’, }/

send(, X)
{'peek’, }/

send(Jok’, X})

TRIFORK.

25

box() - empty().

empty(z -
receive
{‘put’, X} -
full(X)
end.

full(Xx) -
receive
{‘take’, } -
X,
empty();
{‘peek’, } -

l_{‘o0k’, X},

full(X)
end.

25

{'put’,X}

box

(0104

{'take’, }/

send(, X)
{'peek’, }/

send(Jok’, X})

TRIFORK.

25

26

~ empty().

empty() -
receive

{‘put’,

} -

full (X)

end.

full(X) -
receive
{’take’,

} -

empty () ;

{‘peek’,

1 o
I {‘ok’,

full (X)

end.

}s

TRIFORK.

26

26

Box

= spawn(fun box/0),

TRIFORK.

26

26

Box = spawn(fun box/0),

Box ! {‘put’, 27},

TRIFORK.

26

Box = spawn(fun box/0),
Box ! {‘put’, 27},

Box ! {‘take’, self()},
receive

Value - print(Value)
end

26

TRIFORK.

26

27

Objects

Actors

Interface
Fixed API

Protocol
API| changes
with internal state

TRIFORK.

27

27

Objects

Actors

" Fixed AP

Protocol
API| changes
with internal state

TRIFORK.

27

Just a gentle reminder ..,
Smalltalk is NOT only its
Syntax or the class library, it
1s not even about classes. I'm
sorry that I long ago coineg
the term "objects" for this
topic because it gets many
people to focus on the lesser
idea.

The big idea js “messaging“ ——
that is what the kernel of
Smalltalk/Squeak 1s all
about. .,

Alan Kay, October 1993

Sut 1sN't this expensive’”

Sut 1sN't this expensive’”

... heard In the ‘90s

4)

Use Objects!

—

29

Sut 1sN't this expensive’”

... heard In the ‘90s

Use Objects!

\

-

/

~

100.000’s of objects,

are you crazy?

29

Sut 1sN't this expensive’”

... heard yesterday

Use Actors!

\

-

~N

100.000’s of processes,
silly youl

~\

TRIFORK.
29

“What if the OOP parts of other languages
(Java, C++, Ruby, etc.) had the same behavior as
their concurrency support? What if you were
limited to only creating 500 objects total for an
application because any more would make the
app unstable and almost certainly crash it in
hard-to-debug ways? What if these objects
behaved differently on different platforms?”

Joe Armstrong, creator of Erlang

as quoted in
http://weblog.hypotheticalabs.com/?p=217

basho

http://weblog.hypotheticalabs.com/?p=217
http://weblog.hypotheticalabs.com/?p=217

31

—ffect Contanment

Functional languages
disallow effects

Many object-oriented
styles encourage side
effects.

Actors confine effects

TRIFORK.
31

32

From C++ to Java

From Java to Erlang

Garbage Collection

State Containment

TRIFORK.

32

33

1 hreads and LOcKS
don't compose weal

Threaded programs are error prone
(we already knew that).

Good thread design requires global
knowledge.

33

1 hreads and LOcKS
don't compose weal

Threaded programs are error prone
(we already knew that).

Good thread design re .__ =2, ‘-.{;‘
knowledge. £ "

Activity Composition

Activity Composition

Activity Composition

Letit Fal” philosophy

Letit Fal” philosophy

Write code with lots of assertions

36

Letit Fal” philosophy

Write code with lots of assertions

Let a meta-level do fault handling

Letit Fal” philosophy

Write code with lots of assertions
Let a meta-level do fault handling

Defensive code Is a symptom of a
weak platform (segfaults, memory
leaks, ...)

36

TRIFORK.
36

Letit Fal” philosophy

Write code with lots of assertions
Let a meta-level do fault handling

Defensive code Is a symptom of a
weak platform (segfaults, memfo_,,;-j

36

TRIFORK.
36

37

IS

\artin ~owlers Hirst Law of

Striouted Objects

rpc

—
e__

esign

oteve Vinoski: RFC and its Offisprnng:.

Convenient, Yet Fundamentally Hawed

TRIFORK.
37

37

IS

Starbucks doesn’t use

transactions

\artin ~owlers Hirst Law of

Striouted Objects

esign

oteve Vinoski: RFC and its Offisprnng:.

%

Convenient, Yet Fundamentally Hawed

TRIFORK.
37

ADStractions

38

ADStractions

Any abstraction (hiding code) is
oroblematic to distribute, persist, etc.

TRIFORK.
38

ADStractions

Any abstraction (hiding code) is
oroblematic to distribute, persist, etc.

You want to distribute/persist simple data
(as in sgl databases, document stores)

38

TRIFORK.
38

38

ADStractions

Any abstraction (hiding code) is
oroblematic to distribute, persist, etc.

You want to distribute/persist simple data
(as in sgl databases, document stores)

JSON’s popularity is a testament
to this anomaly.

TRIFORK.
38

ADStractions

Any abstraction (hiding code) is
oroblematic to distribute, persist, etc.

You want to distribute/persist simple data
(as in sql databases, document stores) _

38

TRIFORK.
38

Simple Values

39

Simple Values

Tuple, List,

Record, Number, String,

Sinary

39

Simple Values

Tuple, List, Record, Number, String, Binary

Pattern matching is polymorphism for values

TRIFORK.
39

39

Simple Values

Tuple, List, Record, Number, String, Binary

Pattern matching is polymorphism for values

—rlang data stores (like Mnesia) just store
values, not bytes or objects.

TRIFORK.
39

Simple Values

Tuple, List, Record, Number, String, Binary

Pattern matching is polymorphism for values

—rlang data stores (like Mnesia) just store
values, not bytes or objects.

Too much of my Java programs are
pollerplate code.

39

TRIFORK.
39

40

'Object” Moadel Anomalies

Thread & Locks

Interfaces with Fixed A

q

PC/

Defensive Code

RMI

o

Bollerplate code for persistence

TRIFORK.
40

Actor "solutions’

Processes W/ state containment

Protocols
Let 1t Fall
Async Messaging

Send & store simple Data

41

TRIFORK.
41

\aking reliable
distrouted control systems
N the presence of ernrors

\aking reliable
distrouted control systems
N the presence of ernrors

43

\aking reliable
distrouted control systems
N the presence of ernrors

The “secret weapon” for
Ericsson’s market leading,
real-time telephony
systems.

43

\aking reliable
distrouted control systems
N the presence of ernrors

The “secret weapon” for
—ricsson’s market leading,
real-time telephony
systems.

20+ years of experience
to learn from.

_Erlang/O TR

~.~

b "~".
' §~. U , :
.......

®o=aMz|slelelanlnal®inications Platform

—mbedded
Distributed Systems

High Availability

N-Production
Jpgrades

TRIFORK.

44

—ow 10 Leamn Erlang

nt dissect & !fngg,
‘3%‘«‘-& OV\ ~d i

pyle;

46

Your Erlang Program

—a Platform Framework

il

<

TRIFORK.

46

46

Your Erlang Program

—a Platform Framework

il

<

TRIFORK.

46

47

Your Erlang Program

Platform Framework

E
<

E<_
<

TRIFORK.
47

Kresten Krab Thorup
Erlang Person of the Year, 2010

O1TP Actor Behaviors

Servers

—vent Handlers

Finite State Machine

SUpPEervisors
Networking: TCP, HTTP

49

TRIFORK.
49

Tail Recursion

@ Tail recursion is critical to
programming Erlang processes

@ process enters a function

@ function acts on an incoming
message

® as last action in the function, it calls
itself to handle the next message

basho 50

50

Essence of OTP Behaviors
loop(State) ->

basho S

Essence of OTP Behaviors

loop(State) ->
receive
7 handle messages here,

basho 52

Essence of OTP Behaviors

loop(State) ->
receive
7% handle messages here,
76 messages may affect State
end,

basho >3

Essence of OTP Behaviors

loop(State) ->
NState = receive
76 handle messages here,
76 messages may affect State
end,

basho >4

Essence of OTP Behaviors

loop(State) ->
NState = receive
76 handle messages here,
76 messages may affect State
end,

loop(NState).

basho 35

Essence of OTP Behaviors

loop(State) ->
NState = receive
76 handle messages here,
76 messages may affect State
end,

loop(NState).

basho 56

Essence of OTP Behaviors

loop(Callbacks, State) ->
NState = receive
Msg ->
Callbacks:handle(Msg, State)
end,
loop(Callbacks, NState).

basho >7

Essence of OTP Behaviors

loop(Callbacks, State) ->
NState = receive
Ml ->
Callbacks:handle | (M| ,State);
M2 ->
Callbacks:handle2(M2,5State);
M3 ->
Callbacks:handle3(M3,5tate)
end,
loop(Callbacks, NState).
0O

basho >8

Essence of OTP Behaviors

loop(Callbacks, State) ->
{Next, NState} =
receive
Ml ->
Callbacks:handle_m [(M ,State);
M2 ->
Callbacks:handle_m2(M2,5tate);
M3 ->
Callbacks:handle_m3(M3,5State)
end,
case Next of
stop -> ok;
..@ _ -> loop(Callbacks, NState) end.
basho 2

59

Behavior Loops

® These are the basics

@ Actual OTP behavior loops are much
more sophisticated

® cen_server, gen_fsm, supervisor, etc. all
assume specific callback functions,
checked by the compiler

basho 60

—rlang Systems

62

real problems that need
to be solved to realize
the potential of cloud
computing

TRIFORK.
62

62

real problems that need
to be solved to realize
the potential of cloud
computing

TRIFORK.
62

62

-
H

real problems that need
to be solved to realize
the potential of cloud
computing

TRIFORK.
62

62

il
oo

-
I
=)

real problems that need
to be solved to realize
the potential of cloud
computing

m
mllim!

TRIFORK.
62

62

%
il
1

real problems that need
to be solved to realize
the potential of cloud
computing

m
mllim!

TRIFORK.
62

62

%
il
1

real problems that need
to be solved to realize
the potential of cloud
computing

m
mllim!

TRIFORK.
62

PEUUE COUoE

T) P} Pl il Fim 1 i i P Pt

ooaan goaag

PEUUE COUoE

T) P} Pl il Fim 1 i i P Pt

PEUUE COUoE

T) P} Pl il Fim 1 i i P Pt

Async Messaging

O

BEEEE SU99TE
P P et R o e e

Async Messaging
State [Fault] Containment

O

BEEEE SU99TE
P P et R o e e

Async Messaging
State [Fault] Containment
Fault Monitoring

66

Common Medicine Card

TRIFORK
66

66

Common Medicine Card

TRIFORK.

66

67

Common Medicine Card

TRIFORK
67

VWno Else Uses Erang’”

“

|: - -Mobile- - -
W klarna

Advice for New Erlang
Users

basho 69

Integration Using Erlang

Integration Using Erlang

@ Integration often involves distribution

basho 70

Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

basho 70

Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

® [rivial access to TCP, UDP

basho 70

Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

® [rivial access to TCP, UDP

® Sync or async, easy event handling

basho 70

Integration Using Erlang

@ Integration often involves distribution

@ Dealing with data: bit syntax, built-in
packet decoders (HTTP, FCGI, CDR)

e Trivial access to TCP, UDP
® Sync or async, easy event handling

® Application protocol handlers built
using gen_server or gen_fsm

0O

basho 70

Integration Using Erlang

@ Often write little networked clients and
servers directly in the erl shell

® Packet decoding and bit syntax sets
Erlang apart from netcat, perl, etc. in
this regard

@ It's like a middleware/coordination DSL

0O

basho 71

dbg and Tracing

@ Erlang’s tracing is one of its most
amazing features

@ Learn the dbg module, you’ll use it
every day

@ | have needed the Erlang debugger
only once, | always use dbg instead

basho 72

basho

Adyvice for

® All that great stuff you've
heard about Erlang? It’s
true

® Simple concurrency and
coordination

® Hot code loading

® Always-available code
tracing

New Users

73

Sound, practical reliability
Easy integration

Enables “production
prototypes’

Open source at
github.com

Language and docs
available at erlang.org

73

Warning:“Let It Crash”

® This philosophy can be hard for non-
Erlangers to buy into

® QA sees a crash in the log, they treat it as
something bad. Always.

@ explaining it was designed that way
doesn’t always fly

® Programmers new to Erlang (or sometimes
not so new) always want to try to handle
the errors instead

0O

basho 74

74

0O

basho

But “‘Let It Crash”
Works

@ Crash and recovery is invaluable for
early adopter customers

® They keep using the system even if
something goes wrong

® Most of the time, they’'re unaware of
the crash/recovery

e With dbg and hot code loading, you
can debug and repair live systems

75

basho

But Wait! There’s More

extensive library of useful modules

details of OTP applications, supervision,
code upgrade, hot code loading

ets and dets: Erlang Term Storage (in
memory) and Disk ets (persistent)

mnesia: distributed transactional database

rebar: open source build and dependency
management system

76

76

—evolution’

Smalltalk

—evolution’

Java, Internet

Smalltalk /

78

Java

TRIFORK.

78

Multicore, Cloud

—

78

TRIFORK.

78

Multicore, Cloud

—

Thread & Locks

Interfaces with Fixed API
Defensive Code
RPC/RMI

Sollerplate code for persistence

78

TRIFORK.

78

MUltiCOFG, Cloud

p——

Java

Thread & Locks

o

4 ,} ‘ ’
. . gha ."l - ' ..
Interfaces wisFXed%

b Y
o &
o
l
R
.
X
< -’* \
ot SRR
s P & -5 B
Lol
: Dol)
04 .
,
P e
‘
L
o 2 X = "
<.

Boilerplate code for persistence

78

TRIFORK.

78

Multicore, Cloud, Actors

’ * Erlang
Java /

* Erjang
e Akka
Processes w/ state containment

Protocols
L et 1t Fall
Async Messaging

Send & store simple Data

78

TRIFORK.

78

Read T hese

Programming
Erlang cocmm

Also: http://learnyousomeerlang.com/

b—
basho 79

79

http://learnyousomeerlang.com
http://learnyousomeerlang.com

Thanks

basho

