

Graph DatabasesWhat makes them Different?

Darren Wood
Chief Architect, InfiniteGraph

NoSQL – Data Specialists

- Everyone specializes
 - Doctors, Lawyers, Bankers, Developers ©
- Why was data so normalized for so long!
- NoSQL is all about the data specialist
- Specializing in...
 - Distribution / deployment
 - Physical data storage
 - Logical data model
 - Query mechanism

Polyglot NoSQL Architectures

The Physical Data Model

Becoming a relationship specialist...

Rows/Columns/Tables

Meetings					
P1	P2	Place	Time		
Alice	Bob	Denver	5-27-10		

Calls					
From	То	Time	Duration		
Bob	Carlos	13:20	25		
Bob	Charlie	17:10	15		

Payments					
From	То	Date	Amount		
Carlos	Charlie	5-12-10	100000		

Relationship/Graph Optimized

Navigational Query Performance

Scaling Writes

- Big/Fast data demands write performance
- Most NoSQL solutions allow you to scale writes by...
 - Partitioning the data
 - Understanding your consistency requirements
 - Allowing you to defer conflicts

Scaling Graph Writes ACID Transactions

App-1 (E_{1 2}{ V₁V₂})

App-2 $(E_{23}\{V_2V_3\})$

App-3

InfiniteGraph

High Performance Edge Ingest

Trade offs

- Excellent for efficient use of page cache
- Able to maintain full base data consistency
- Achieves highest ingest rate in distributed environments
- Almost always has highest "perceived" rate
- Trading Off :
 - Eventual consistency in graph
 - Updates are still atomic, isolated and durable but phased
 - External agent performs graph building

Result...

Scaling Reads and Query

Partitioning and Read Replicas... easy right!

Application(s)

Processor Processor Processor Processor Processor

Partition 3

Partition 2

Partition 1

Partition ...n

Why are Graphs Different?

Application(s)

Optimizing Distributed Navigation

Pregel Clones

- Message passing for each hop, messages processed at the data host for the target vertex
- High concurrency, no data leaves its physical host
- Message marshalling and transport is expensive
- Distributed Caching Models
 - Essentially trying to cache graph in memory over multiple hosts
 - Requires too much memory for large graphs
 - Issues with cache consistency

Optimizing Distributed Navigation

- InfiniteGraph... both
 - Detect local hops and perform in memory traversal
 - Intelligently cache remote data when accessed frequently
 - Route tasks to other hosts when it is optimal

Schema – It's not your enemy!

(at least not all the time...)

- Schema vs Schema-less
 - Database religion
 - No time for a full debate here
 - InfiniteGraph supports schema, but does not restrict connection types between vertices
 - Planning to also support "Document Style" Nodes

GraphViews Leveraging Schema in the Graph

Schema Enables Views

- GraphViews are extremely powerful
- Allow Big Data to appear small!
- Connection inference can lead to exponential gains in query performance
- Views are reusable between queries
- Built into the native kernel

Advanced Configured Placement

- Physically co-locate "closely related" data
- Driven through a declarative placement model
- Dramatically speeds "local" reads

Why InfiniteGraph™?

- Objectivity/DB is a proven foundation
 - Building distributed databases since 1993
 - A complete database management system
 - Concurrency, transactions, cache, schema, query, indexing
- It's a Graph Specialist!
 - Simple but powerful API tailored for navigation of data
 - Easy to configure distribution model

Fully Distributed Data Model

AddVertex()

IG Core/API

Customizable Placement

Distributed Object and Relationship Persistence Layer

InfiniteGraph is a Complete Database

 InfiniteGraph helps manage the things you don't want to do, but want to have done:

Concurrency

- Transactions (commit/rollback)
- Controlled multi-user reading during updates

Schema Control

Build complex data structures, make changes easily and migrate existing data

Distribution

Sharing large amounts of distributed data between distributed processes

Indexes

Choose built-in key-value, b-tree or other indexes

Cache

Keep large sections of the graphs in configurable memory caches

Super Simple API

```
Person alice = new Person("Alice");
helloGraphDB.addVertex( alice );

Person bob = new Person("Bob");
helloGraphDB.addVertex( bob );

Person carlos = new Person("Carlos");
helloGraphDB.addVertex( carlos );

Person charlie = new Person("Charlie");
helloGraphDB.addVertex( charlie );
```


Adding Edges

```
MyEdgeType edge = new MyEdgeType();
vertexA.addEdge ( edge, vertexB, EdgeKind.??? );
Meeting denverMeeting = new Meeting("Denver", "5-27-10");
alice.addEdge(denverMeeting, bob, EdgeKind.BIDIRECTIONAL);
Call bobCallToCarlos = new Call(getRandomJulyTime());
bob.addEdge(bobCallToCarlos, carlos, EdgeKind.BIDIRECTIONAL);
Payment payment = new Payment(10000.00);
carlos.addEdge(payment, charlie, EdgeKind.BIDIRECTIONAL);
Call bobCallToCharlie = new Call(getRandomJulyTime());
bob.addEdge(bobCallToCharlie, charlie, EdgeKind.BIDIRECTIONAL);
```


The Result...

Graph Traversal (Navigation) Queries

- Use an instance of the Navigator class to perform a navigation query.
- A navigation instance is highly customizable, but is comprised of the following basic parts:
 - Origin : The vertex from which to begin
 - Guide strategy
 - Guide.Strategy.SIMPLE_BREADTH_FIRST
 - Guide.Strategy.SIMPLE_DEPTH_FIRST
 - Graph Views : Powerful filtering and
 - Qualifiers
 - Qualifying valid intermediate paths and results
 - Handlers
 - A result handler

Tools To Suit the Solution

Pathfinding

Graph Analysis (Algorithms)

Graph Analysis (Algorithms)

- Social Networks
 - Most connected participants
 - Influencers
 - Important Syndicates or Sub-networks
- Central figures in crime organisations
- Business Intelligence
 - Discovering Knowledge Assets
 - Complex Big Data Analytics

Graph Analysis (Patterns)

- Crime (again)
 - Recognize common patterns of activity
 - Complex chains of interaction
- Security
 - Recognize attack/threat patterns
 - Auditing / log analytics
- Targeting Advertising
 - To specific browsing patterns

Many Many More

- Spatial data
- Financial Services
- Defense / Situational Awareness
- Sciences

- Health Care
- Genealogy
- Logistics
- Tracking
- PLM

