
©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

JVM Mechanics
A peek under the hood

Gil Tene, CTO & co-Founder, Azul Systems

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

About me: Gil Tene

co-founder, CTO
@Azul Systems

Working JVMs since
2001, Managed
runtimes since 1989

Created Pauseless & C4
core GC algorithms
(Tene, Wolf)

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise
apps, etc... * working on real-world trash compaction issues, circa 2004

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

About Azul

We make scalable Virtual
Machines

Have built “whatever it takes
to get job done” since 2002

3 generations of custom SMP
Multi-core HW (Vega)

Now Pure software for
commodity x86 (Zing)

“Industry firsts” in Garbage
collection, elastic memory,
Java virtualization, memory
scale

Vega

C4

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

High level agenda

Compiler stuff

Adaptive behavior stuff

Ordering stuff

Garbage Collection stuff

Some chest beating

Open discussion

Compiler Stuff

The JIT compilers transforms code

The code actually executed can be very
different than the code you write

Some simple compiler tricks

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Code can be reordered...

int doMath(int x, int y, int z) {
int a = x + y;
int b = x - y;
int c = z + x;
return a + b;

}

Can be reordered to:
int doMath(int x, int y, int z) {

int c = z + x;
int b = x - y;
int a = x + y;
return a + b;

}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Dead code can be removed

int doMath(int x, int y, int z) {
int a = x + y;
int b = x - y;
int c = z + x;
return a + b;

}

Can be reduced to:

int doMath(int x, int y, int z) {
int a = x + y;
int b = x - y;
return a + b;

}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Values can be propagated

int doMath(int x, int y, int z) {
int a = x + y;
int b = x - y;
int c = z + x;
return a + b;

}

Can be reduced to:

int doMath(int x, int y, int z) {
return x + y + x - y;

}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Math can be simplified

int doMath(int x, int y, int z) {
int a = x + y;
int b = x - y;
int c = z + x;
return a + b;

}

Can be reduced to:

int doMath(int x, int y, int z) {
return x + x;

}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

So why does this matter

Keep your code “readable”
largestValueLog = Math.log(largestValueWithSingleUnitResolution);
magnitude = (int) Math.ceil(largestValueLog/Math.log(2.0));
subBucketMagnitude = (magnitude > 1) ? magnitude : 1;
subBucketCount = (int) Math.pow(2, subBucketMagnitude);
subBucketMask = subBucketCount - 1;

Hard enough to follow as it is

No value in “optimizing” human-readable meaning away

Compiled code will end up the same anyway

Some more compiler tricks

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Reads can be cached

int distanceRatio(Object a) {
int distanceTo = a.getX() - start;
int distanceAfter = end - a.getX();
return distanceTo/distanceAfter;

}

Is the same as
int distanceRatio(Object a) {

int x = a.getX();
int distanceTo = x - start;
int distanceAfter = end - x;
return distanceTo/distanceAfter;

}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Reads can be cached
void loopUntilFlagSet(Object a) {

while (!a.flagIsSet()) {
loopcount++;

}
}

Is the same as:
void loopUntilFlagSet(Object a) {

boolean flagIsSet = a.flagIsSet();
while (!flagIsSet) {

loopcount++;
}

}

That’s what volatile is for...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Writes can be eliminated

Intermediate values might never be visible
void updateDistance(Object a) {

int distance = 100;
a.setX(distance);
a.setX(distance * 2);
a.setX(distance * 3);

}

Is the same as
void updateDistance(Object a) {

a.setX(300);
}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Writes can be eliminated
Intermediate values might never be visible

void updateDistance(Object a) {
a. setVisibleValue(0);
for (int i = 0; i < 1000000; i++) {

a.setInternalValue(i);
}
a.setVisibleValue(a.getInternalValue());

}

Is the same as
void updateDistance(Object a) {

a.setInternalValue(1000000);
a.setVisibleValue(1000000);

}

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Inlining...

public class Thing {
private int x;
public final int getX() { return x };

}
...
myX = thing.getX();

Is the same as
Class Thing {

int x;
}
...
myX = thing.x;

Things JIT compilers can do

..and static compilers can have
a hard time with

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Class Hierarchy Analysis (CHA)

Can perform global analysis on currently loaded code

Deduce stuff about inheritance, method overrides, etc.

Can make optimization decisions based on assumptions

Re-evaluate assumptions when loading new classes

Throw away code that conflicts with assumptions
before class loading makes them invalid

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Inlining works without “final”
public class Thing {

private int x;
public int getX() { return x };

}
...
myX = thing.getX();

Is the same as
Class Thing {

int x;
}
...
myX = thing.x;

As long as there is only one implementer of getX()

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Speculative stuff
The power of the “uncommon trap”

Being able throw away wrong code is very useful

Speculatively assuming callee type

polymorphic can be “monomorphic” or “megamorphic”

Can make virtual calls static even without CHA

Can speculatively inline things without CHA

Speculatively assuming branch behavior

We’ve only ever seen this thing go one way, so....

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Adaptive compilation make
cleaner code practical

Reduces need to trade off clean design against speed

E.g. “final” should be used on methods only when you
want to prohibit extension, overriding. Has no effect on
speed.

E.g. branching can be written “naturally”

Interesting side effects

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Adaptive compilation is...
adaptive

Measuring actual behavior is harder

Micro-benchmarking is an art

JITs are moving target

“Warmup” techniques can often fail

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Warmup problems

Common Example:
Trading system wants to have the first trade be fast

So run 20,000 “fake” messages through the system to warm up

let JIT compilers optimize code, and deopt before actual trades

What really happens
Code is written to do different things “if this is a fake message”

e.g. “Don’t send to the exchange if this is a fake message”

JITs optimize for fake path, including speculatively assuming “fake”

First real message through deopts...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Warmup tips...
(to get “first real thing” to be fast)

System should not distinguish between “real” and “fake”
Make that an external concern

Avoid all conditional code based on “fake”

Avoid all class-specific calls based on “fake” (“object oriented ifs”).

Use “real” input sources and output targets instead
Have system output to a sink target that knows it is “fake”

Make output decisions based on data, not code

E.g. array of sink targets, with array index computed from message
payload

Ordering stuff

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Ordering of operations
Within a thread, it’s trivial : “happens before”

Across threads?

News flash: CPU memory ordering doesn’t matter

There is a much bigger culprit at play: Compilers
The code will be reordered before your cpu ever sees it

The only ordering rules that matter are the JMM ones.

Intuitive read:
“Happens before holds within threads”

Things can move into, but not out of synchronized blocks

Volatile stuff is a bit more tricky...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Ordering of operations

Source: http://g.oswego.edu/dl/jmm/cookbook.html

http://g.oswego.edu/dl/jmm/cookbook.html
http://g.oswego.edu/dl/jmm/cookbook.html

Garbage Collection Stuff

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Most of what People seem to “know”
about Garbage Collection is wrong

In many cases, it’s much better than you may think
GC is extremely efficient. Much more so that malloc()

Dead objects cost nothing to collect

GC will find all the dead objects (including cyclic graphs)

...

In many cases, it’s much worse than you may think
Yes, it really does stop for ~1 sec per live GB (in most JVMs).

No, GC does not mean you can’t have memory leaks

No, those pauses you eliminated from your 20 minute test are
not gone

...

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Generational Collection

Weak Generational Hypothesis; “most objects die young”

Focus collection efforts on young generation:

Use a moving collector: work is linear to the live set

The live set in the young generation is a small % of the space

Promote objects that live long enough to older generations

Only collect older generations as they fill up

“Generational filter” reduces rate of allocation into older generations

Tends to be (order of magnitude) more efficient

Great way to keep up with high allocation rate

Practical necessity for keeping up with processor throughput

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

GC Efficiency:
Empty memory vs. CPU

100%

CPU%

Heap size
Live set

Heap size vs.
GC CPU %

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Two Intuitive limits

If we had exactly 1 byte of empty memory at all
times, the collector would have to work “very hard”,
and GC would take 100% of the CPU time

If we had infinite empty memory, we would never have
to collect, and GC would take 0% of the CPU time

GC CPU % will follow a rough 1/x curve between these
two limit points, dropping as the amount of memory
increases.

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Empty memory needs
(empty memory == CPU power)

The amount of empty memory in the heap is the
dominant factor controlling the amount of GC work

For both Copy and Mark/Compact collectors, the
amount of work per cycle is linear to live set

The amount of memory recovered per cycle is equal to
the amount of unused memory (heap size) - (live set)

The collector has to perform a GC cycle when the
empty memory runs out

A Copy or Mark/Compact collector’s efficiency doubles
with every doubling of the empty memory

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

What empty memory controls

Empty memory controls efficiency (amount of collector
work needed per amount of application work
performed)

Empty memory controls the frequency of pauses (if
the collector performs any Stop-the-world operations)

Empty memory DOES NOT control pause times (only
their frequency)

In Mark/Sweep/Compact collectors that pause for
sweeping, more empty memory means less frequent but
LARGER pauses

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

GC and latency:
That pesky stop-the-world thing

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Delaying the inevitable
Some form of copying/compaction is inevitable in practice

And compacting anything requires scanning/fixing all references to it

Delay tactics focus on getting “easy empty space” first
This is the focus for the vast majority of GC tuning

Most objects die young [Generational]
So collect young objects only, as much as possible. Hope for short STW.
But eventually, some old dead objects must be reclaimed

Most old dead space can be reclaimed without moving it
[e.g. CMS] track dead space in lists, and reuse it in place
But eventually, space gets fragmented, and needs to be moved

Much of the heap is not “popular” [e.g. G1, “Balanced”]
A non popular region will only be pointed to from a small % of the heap
So compact non-popular regions in short stop-the-world pauses
But eventually, popular objects and regions need to be compacted

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Memory use
 How many of you use heap sizes of:

 F more than ½ GB?

 F more than 1 GB?

 F more than 2 GB?

 F more than 4 GB?

 F more than 10 GB?

 F more than 20 GB?

 F more than 50 GB?

Reality check: servers in 2012
Retail prices, major web server store (US $, Oct 2012)

Cheap (< $1/GB/Month), and roughly linear to ~1TB

10s to 100s of GB/sec of memory bandwidth

24 vCore, 128GB server ≈ $5K

24 vCore, 256GB server ≈ $8K

32 vCore, 384GB server ≈ $14K

48 vCore, 512GB server ≈ $19K

64 vCore, 1TB server ≈ $36K

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The Application Memory Wall
A simple observation:

Application instances appear to be unable to
make effective use of modern server memory
capacities

The size of application instances as a % of a
server’s capacity is rapidly dropping

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

How much memory do applications need?

“640KB ought to be enough for anybody”

WRONG!

So what’s the right number?
6,400K?
64,000K?
640,000K?
6,400,000K?
64,000,000K?

There is no right number

Target moves at 50x-100x per decade

“I've said some stupid things and
some wrong things, but not that.
No one involved in computers
would ever say that a certain
amount of memory is enough for
all time …” - Bill Gates, 1996

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

“Tiny” application history

100KB apps on a ¼ to ½ MB Server

10MB apps on a 32 – 64 MB server

1GB apps on a 2 – 4 GB server

??? GB apps on 256 GB
Assuming Moore’s Law means:

 “transistor counts grow at ≈2x
every ≈18 months”

It also means memory size grows
 ≈100x every 10 years

2010

2000

1990

1980

“Tiny”: would be “silly” to distribute

Application
Memory Wall

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

What is causing the
Application Memory Wall?

Garbage Collection is a clear and dominant cause

There seem to be practical heap size limits for
applications with responsiveness requirements

[Virtually] All current commercial JVMs will exhibit a
multi-second pause on a normally utilized 2-6GB heap.

It’s a question of “When” and “How often”, not “If”.

GC tuning only moves the “when” and the “how often” around

Root cause: The link between scale and responsiveness

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

The problems that need solving
(areas where the state of the art needs improvement)

Robust Concurrent Marking
In the presence of high mutation and allocation rates
Cover modern runtime semantics (e.g. weak refs, lock deflation)

Compaction that is not monolithic-stop-the-world
E.g. stay responsive while compacting ¼ TB heaps

Must be robust: not just a tactic to delay STW compaction
[current “incremental STW” attempts fall short on robustness]

Young-Gen that is not monolithic-stop-the-world
Stay responsive while promoting multi-GB data spikes
Concurrent or “incremental STW” may both be ok
Surprisingly little work done in this specific area

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

jHiccup

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Incontinuities in Java platform execution

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1665.024&

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

jHiccup
A tool for capturing and displaying platform hiccups

Records any observed non-continuity of the underlying platform

Plots results in simple, consistent format

Simple, non-intrusive
As simple as adding the word “jHiccup” to your java launch line

% jHiccup java myflags myApp

(Or use as a java agent)

Adds a background thread that samples time @ 1000/sec

Open Source
Released to the public domain, creative commons CC0

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Telco App Example

0"

20"

40"

60"

80"

100"

120"

140"

0" 500" 1000" 1500" 2000" 2500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"
0"

20"

40"

60"

80"

100"

120"

140"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Hiccups"by"Percen?le" SLA"

Optional SLA
plotting

Max Time per
interval

Hiccup
duration at
percentile

levels

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Examples

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Idle App on Busy System

0"

10"

20"

30"

40"

50"

60"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=49.728&

0"

10"

20"

30"

40"

50"

60"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Idle App on Quiet System

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.336&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Idle App on Quiet System

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.336&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Idle App on Dedicated System

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=0.411&

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

EHCache: 1GB data set under load

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

0" 500" 1000" 1500" 2000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=3448.832&

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Fun with jHiccup

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"Max=20.384&
0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Drawn to scale

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

What you can expect (from Zing)
in the low latency world

Assuming individual transaction work is “short” (on
the order of 1 msec), and assuming you don’t have
100s of runnable threads competing for 10 cores...

“Easily” get your application to < 10 msec worst case

With some tuning, 2-3 msec worst case

Can go to below 1 msec worst case...

May require heavy tuning/tweaking

Mileage WILL vary

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Oracle HotSpot (pure newgen) Zing

Low latency trading application

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Low latency - Drawn to scale

Oracle HotSpot (pure newgen) Zing

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1.568&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

5"

10"

15"

20"

25"

0" 100" 200" 300" 400" 500" 600"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=22.656&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2012 Azul Systems, Inc.	
 	
 	
 	
 	
 	

Open
Discussion
http://www.azulsystems.com

http://www.jhiccup.com

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

