PHP ON THE METAL [t adame

THE HIPHOP VIRTUAL MACHINE

= HHVM is the world’s fastest PHP engine

m https://github.com/facebook/hiphop-php

= JIT compiler for development and production
= Nickel tour of the JIT

= Perf-oriented perspective on its development
= A new approach to cache profiling

= Lessons learned

MOTIVATION

BACKGROUND: PHP

= Your average “developer productivity” language
= Dynamic bindings for everything
= Variables are untyped

<?php

function max($a, $b) {
return $a > $b ? $a : $b;

}

echo max(1, 2);
echo max(“abe”, “zebra”);

BACKGROUND: HIPHOP

= |nterpreter,
debugger, profiler,
AoT compiler

= AoT offers 2-7x win
over interpreted
PHP

= Paper in OOPSLA
12

= Crucial
optimization: type
inference

PRODUCTION THROUGHPUT

- Baseline HipHop -+ HipHop 4 Zend

Relative Throughput
_ 5
\
[
N
N
N

0.5
O I I I I |
N
5 5 N ~ ~ >
50% é\/ ‘g\/ ,\“3/ é\/ g\/

From “The HipHop Compiler for PHP,” Zhao et al., OOPSLA 2012

HARD EXPRESSIONS FOR HPHP

goldbach_conjecture() ? 3.14159 : “string”

mysql_fetch_row($result) [0]

123.2 / $divisor

HHVM: THEORY

®" HHVM vision
= Incremental compilation
= Same engine in dev and prod
= Optimize in response to program behavior
= Type every datum in the system!

= Higher performance, more cohesion, faster dev environment
= Win/win/win!

HHVM CORE DESIGN

= PHP programs are represented in bytecode (HHBC)

= JIT Goal: Never operate on generic data

= Compilation unit: the Tracelet
= Basic block, with concrete input types
= Use the concrete input types to guard tracelet entry
" Inside the tracelet, exploit type information
= |If type inference fails, break the Tracelet and reguard

function mymax($a, $b) {
return $a > $b ? %$a :

}

$b;

PushL 1

PushL @

Gt

JmpZ 1f

PushL @

Jmp 7 2f
1: PushL 1
2: RetC

TRACELET CONSTRUCTION: MACHINE

CODE

" mymax(10, 333);

Locald :: Int
Locall :: Int
PushL 1

PushL 0

Gt

JmpZ X

cmpl
jne
cmp L
jne

mov
mov
mov
cmp
jle
jmpg

$0x3,-0x4 (%rbp)
<retranslate>
$0x3,-0x14 (%rbp)
<retranslate>

—0x20(%rbp) ,%rax
—0x10(%rbp) ,%ri3
%rl3,%srcx

%srax,%rcx
<translateSuccessorg>
<translateSuccessorl

P

HHVM: PROTOTYPE

® 6-month, 3-man effort
= Drew Paroski, Jason Evans, Keith Adams
= PHP subset
= Showed real promise
= microbenches
= kernel extracted from Facebook’s production code

® We decide to move forward...

FROM PROTOTYPE TO PRODUCTION

= PHP: a big language
= Lots of non-orthogonal features
= Doesn’t boil down to a few key primitives
= Corner cases

= Facebook’s codebase: ~20 MLOC
= Exercises all of PHP
= ...and some new parts we invented

HHVM: PRACTICE

® 12 months later: Facebook runs in HHVM
= ~13% of the compiler’'s performance
m7x slower

LOW-HANGING FRUIT

= Profiling found hot spots
= We optimized them...

= and things got a lot
better!

watermelons by matneym
flickr creative commons

...BUT NOT GOOD ENOUGH

= April 2012: performance stagnates
® ~50%, 2x slower

= Flat CPU profile

m ~18% of time spent in JIT output
®= Long tail of runtime functions
®= memory allocation

= Diminishing returns to “measure and tune” methodology

SOME SCARY QUESTIONS

= Was there something fundamentally wrong with our design?

= Was the system not working as designed?

A CLUE

= Jordan DeLong changed our strategy for chaining tracelets
together

= Got a 14% win!
= Only 18% of time spent in JIT output, both before and after

= Somehow, improving the JIT made all the other code faster,
too

SPOOKY ACTION-AT-A-DISTANCE

®When code makes unrelated code faster or

slower, suspect caching.

® Cache is a shared, stateful resource
= Medium for performance teleportation

MEMORY HIERARCHY

LLC: ~16MB

MEMORY HIERARCHY

L2: ~256KB

MEMORY HIERARCHY

L1: 32KB1 /32 KB D
/

OUR CACHES, OURSELVES

8-way set associative

64
Colors

Sandy Bridge L1 icache: total 32KB

CACHE SIZE TREND

L1 dcache
capacity

1992 Sun SuperSPARC 16KB
1996 DEC Alpha 21264 64 KB
1999 Intel Pentium lil 16 KB
2003 AMD Opteron 64 KB
2004 IBM POWERS 32KB
2007 ARM A8 Cortex 16KB

2012 Intel Sandy Bridge 32 KB

m ~8 000 instructions
® ~1000-2000 lines of C

®This is all the code or data a core can see at a
time

PROFILING FAILS FOR CACHE MISSES

= Histograms of misses lead to bogus conclusions

= Tells you what is not in cache

= Cannot tell you why it is not in cache
" It used to be
= What pushed it out?

EXAMPLE

for 1 = 0 to M
touch itemO, iteml, .. item8
for j = 0 to N
touch 1item9

10 items sharing a way

Loop takes 10M cache misses
Get rid of one: 9M

Get rid of any two: O

= Cache miss profiles show 10 separate, equally important
problems, when there is only one problem

EXAMPLE

itemO iteml item2 item3 item4 item5 item6 item7

= |[n a complex profile, it’s unclear what is interfering with what

= Every miss is also an eviction, but hardware tells you what
missed, not what was evicted

= We want to ask “what if” questions: if | get rid of these
misses, what happens?

ABSTRACTION: INTERFERENCE GRAPH

=" The edge A->B means “A evicted B”
= Edge weighted by frequency of eviction

mHeuristic: Focus optimization effort on high-
weight cycles in this graph

TRACE-BASED CACHE PROFILING

= Step 1: Pin-based instruction trace generator

= Instruments every single instruction
= Dumps 1 million out of every billion

Ox1bfcd61
Ox1bfcd64
Ox1bfcd65
Ox1bfcd68
Ox1bfcd6e
Ox1bfc8a0

Ox1bfc8al
Ox1bfc8a4
Ox1bfc8a7
Ox1bfc8ab
Ox1bfc8ae
Ox1bfc8b1

Ox1bfc8b3
Ox1bfc8hb6
Ox1bfc8bc
Ox1bfc8be
Ox1bfc8cl
Ox1bfc8c4

TRACE-BASED CACHE PROFILING

= Step 2: Build a simple cache simulator
= https://github.com/kmafb/cachesim
= Dumps contents of cache at every eviction

= Entries that evict one another frequently are interfering

evict Ox250bblbc0O® O0x3807ff38acOlbcl newer 0x2501660bc0O
Ox2407ff38cl1l7dbcO® O0x240bblbcO® 0x2401c6fbcO
Ox2507ff38cl1l7bbcO® 0x2501be9bcO® 0x2407ff38cl7bbcO

miss 950875 Ox3807ff38ac0Olbcl

evict O0x2507ff38cl1l7bcOO® Ox3807ff38acOlcO8 newer
Ox2401lelecO0O Ox2407ff38cl7dcOO Ox2401c71cOO Ox2401c6fcO0
Ox240bblcOO O0x2501660c00 Ox2407ff38cl7bcOO

miss 950881 0Ox3807ff38ac01cO8

evict O0x2501fd4680 0x3807ff38ac04680 newer 0x2401c02680
Ox2401c70680 0x2401656680 O0x250ba6680 0x2501656680
Ox2401655680 0x3807ff38aec2680

miss 951104 0x3807ff38ac04680

HHVM ICACHE TRACE RESULTS

= An offender in lots of high-weight cycles: memcpy

= memcpy hopes
= super small
= super hot
= how can it miss in cache?

ICACHE AND MEMCPY

® Qur system’s memcpy: 11KB!

= Specialized for size, source/dest overlap, CPU, alignment, etc.
= Awesome in memcpy microbenchmarks

= Fragile in the cache

memcpy memcpy memcpy

FBEMEMCPY

= Solution: “worse” memcpy extern "C" {

HOT_FUNC
void*
0 memcpy (void* vdest, const void* vsrc, size_t len) {
= GOOd for abOUt 1/0 auto src = (const char*)vsrc;
auto dest = (char*) vdest;

® Nice! But no miracle

// Do the bulk with fat loads/stores.
ASSERT((len & 0x3f) == 0);
while (len) {

auto dqdest = (__ml128i*)dest;

auto dqgsrc = ml128i*)src;

(

__m128i xmm® = _mm_loadu_sil28(dqsrc + 0);
__m128i xmml = _mm_loadu_sil28(dqsrc + 1);
__m128i xmm2 = _mm_loadu_sil28(dqsrc + 2);
__m128i xmm3 = _mm_loadu_sil28(dqsrc + 3);
len -= 64;

dest += 64;

src += 64;

_mm_storeu_sil28(dqdest + 0, xmm@);
_mm_storeu_sil28(dqdest + 1, xmml);
_mm_storeu_sil28(dqdest + 2, xmm2);
_mm_storeu_sil28(dqdest + 3, xmm3);

}

return vdest;

}

" How did we get
twice as fast?

= By getting 1%
faster over and
over

NO MIRACLES

HHVM PERF

120

100 - =

80

60
@ hhvm vs. hphp

hphp

40

20

(0]

'v 'y 'y 'v NSO D D DD
> q\"’ q,\" \a ol q,\“' rb\"’ o\" q,\“’ fb\“' o «\" W A o o A
RN AR L S P R AR i N

'y 'y
N \«\“’ SNy q,\“' \o,\ g
SIS

AN (b\ q-,\ q,\ A\

SCARY QUESTIONS ANSWERED

= Basic design was sound
®= _..and the system was working as designed

= |nitial performance gap due to Unreasonable Effectiveness of
Tuning

TACTICAL LESSONS

" When the profiler works, use it

®= Your CPU is still a microcomputer
= Can only see 16-64KB of code, data at a time

= Spooky action-at-a-distance is caused by cache interference
® Count-based cache profiles can hide opportunities
®= Trace-based cache profiles rock, but tools are non-existent

STRATEGIC LESSONS

= Replacing a working, tuned system will take longer than you
think

= Big, sweeping changes were a mirage

= Sometimes seeing a fundamentally sound system through
requires, well, faith
= or at least, tolerance of existential doubt

TEAM HHVM

THANKS

m https://github.com/facebook/hiphop-php/
® Questions?

BACKUP

LOGICAL VIEW OF CODE CACHE

Retranslate A

Retranslate B
$a :: Int,
$b :: Int
return $b
Retranslate C
: PushL 1
PushL @

Gt
JmpZ 1f

B: PushL 0 —> Program Flow

Jmp 7 2f s
1: PushL 1 Guard Flow

: RetC

N O

CALL MYMAX(“A”, “Z")

$a : Int, $a :: String,
$b :: Int $b :: String Retranslate A

$a>%$b?

$a : Int, $a :: String,
$b :: Int $b :: String Retranslate C
return $b return $b

Retranslate B

—> Program Flow
~— > Guard Flow

CALL MYMAX(“Z", “A")

$a :: String,
$b :: String Retranslate A
$a>%$b?

$a :: String, Retranslate B

$b :: String
return $a

$a :: Int, $a :: String,
$b :: Int $b :: String Retranslate C
return $b return $b

—> Program Flow
~— 7 Guard Flow

RISK: CODE EXPLOSION

= N inputs, each takes on t types
= will yield tN separate translations!
= Solution: truncate tracelet chain at 12 items
= Fall back to interpreter.
= Applies to 0.0066% of chains

$a :: Int,

$b :: Bool, Interp A

$c :: String

PROD: TRACELET CHAIN LENGTH

Chain length

1 -

Pt

vvvvvvvvvv
— oJ m -t u o - (== L=a} o — oJ m

RISK: WARMUP

= Possible weak point of JIT vs. AoT: warmup latency
= We start with an empty code cache
= Goal: reach steady state quickly

WARMUP: PRODUCTION REQUESTS/SECOND

HHVM Warmup

1001

80-’_'_/\ M
60
401

201

0 1 1 Ll
9:00 am 11:00 am 1:00 pm 3:00 pm

[B GroupB-GroupB-lb10.05.pm1.hphp.wsm2.instantovno:instantovno.mps_100ms (D...]

CODE SIZE OVER TIME

bytes

130,000,000 -
120,000,000 -
110,000,000 -
100,000,000 -
90,000,000 4
60,000,000 4
70,000,000 4
60,000,000 4
50,000,000 4
40,000,000 -
30,000,000 4
20,000,000 4
10,000,000 4

Code Size over Time

w Hot code
Cold code

0

T T T L) L) L L) L)
wvm o v O 1N o wm o n O n
- N ™M M = =t (Vo T ¥ BN = BN =]

minutes since boot

JIT THROUGHPUT / TIME

35,000,000

30,000,000 -

25,000,000 1

20,000,000 -

15,000,000 -

10,000,000 -

5,000,000 -

JIT throughput

oOn o n o n O n O n o n o Wm

- 2

PERF TOOL

= When investigating cache effects, you're blind without
hardware performance counters

= Use the Linux kernel perf tool

= Whole-system sampling for hardware performance counters.

= When a sample fires, records the instruction, and optionally
the stack trace where the event occured.

PERF OUTPUT

+ 13.12% hhvm perf-31695.map [.] Ox0000000006c9dc6l B

+ 4.65% hhvm hhvm [.] void HPHP::VM::Unit::mergeImpl<false>(voi#

B 3.09% hhvm T1l1ibc-2.13.s0 [.] __memcpy_ssse3 E:
[.]

2.07% hhvm hhvm

HPHP: :HphpArray::find (HPHP: :StringData co#

: tHphpArray::find (HPHP: :StringData const*, -+int) const

+ 31.09% HPHP: :HphpArray: :nvGet (HPHP: :StringData const*) const #
+ 17.21% HPHP: :HphpArray: :get(HPHP: :Variant const&, bool) const &
+ 15.87% _ZN4HPHP2VML15array_getm_implEPNS_SArrayDataEPNS_10StringDataEiPNS_10TypedValueE S
+ 12.68% HPHP::VM::array_dissetm_s®(void const*, HPHP::StringData*) E:
+ 12.32% HPHP: :HphpArray: :exists(HPHP::String const&) const &
+ 2.86% HPHP::VM::array_tdissetm_s0_fast(void const*, HPHP::StringData¥*) 3
+ 2.60% HPHP::HphpArray::exists(HPHP::Variant const&) const 3
+ 1.30% HPHP::VM::array_tissetm_s(void const*, HPHP::StringData%*) 3
+ 0.80% HPHP::HphpArray::get(HPHP::String const&, bool) const 3
B 1.51% hhvm hhvm [.] HPHP::tvDecRefHelper (HPHP: :DataType, unsi#
+ 1.50% hhvm hhvm [.] HPHP: :HphpArray::~HphpArray() S
B 1.49% hhvm hhvm [.] HPHP::VM::Transl::TargetCache: :Cache<HPHP%
+ 1.45% hhvm hhvm [.] free 3
B 1.34% hhvm hhvm [.] HPHP::VM::Transl::newInstanceHelperCached#
B 1.25% hhvm hhvm [.] HPHP::SmartAllocatorImpl::alloc(unsigned #
- 1.19% hhvm 1l1ibc-2.13.s0 [.] __memset_sse2 E:
+ 1.18% hhvm hhvm [.] longest_match &
+ 1.11% hhvm hhvm [.] HPHP::VM::Class::classof(HPHP::VM::PreCla#
- 1.09% hhvm hhvm [.] malloc E:

Press '?' for help on key bindings

INCLUSIVE CACHES

L1: 32KB1 /32 KB D
/

SYSTEM SIZE

= Source tree contains 262864 semi-colons

® PHP runtime (including 169 extensions): 132092
= Excluding extensions: 72729

= Jit: 17582

ICACHE AND MEMCPY

When investigating our high rate of instruction cache misses,
perf led to an unusual culprit: memcpy

Shouldn’t memcpy be in cache all the time?

32. perf-23494.map [.] 6x0000000006ed0308

1. libc-2.13.s0 [.] __memcpy_ssse3

1l- hhvm hhvm [.] HPHP::VM::Transl::TargetCache: :Cache<HPHP: : VM
- x I hhvm [.] HPHP::HphpArray::find(HPHP: :StringData const*
+ 1.10% hhvm hhvm [.] HPHP::SmartAllocatorImpl::alloc(unsigned long
+ 0.85% hhvm hhvm [.] malloc
+ 0.71% hhvm hhvm [.] _ZN4HPHP2VM6TranslL19VerifyParamTypeSLlowEPKNS
+ 0.69% hhvm hhvm [.] HPHP::VM::Transl::newInstanceHelperCached(HPH
+ 0.67% hhvm hhvm [.] _ZN4HPHP2VML4ElemILblELNS_8DataTypeEnlEEEPNS_
+ 0.66% hhvm hhvm [.] free
+ 0.58% hhvm hhvm [.] HPHP::VM::Class::getSProp(HPHP::VM::Class*, H
+ 0.58% hhvm hhvm [.] HPHP::VM::FixedStringMap<unsigned int, true>:
+ 0.57% hhvm hhvm [.] HPHP::VM::iter_value_cell_local_array(HPHP::V
+ 0.56% hhvm hhvm [.] HPHP::tvDecRefHelper (HPHP: :DataType, unsigned
+ 0.54% hhvm T1libc-2.13.s0 [.] __memcmp_ssed_1
+ 0.52% hhvm T1libc-2.13.s0 [.] __memset_sse2
+ 0.51% hhvm hhvm [.] HPHP::HphpArray::update(HPHP: :StringData*, HP
+ 0.50% hhvm hhvm [.] HPHP::Variant::toKey() const

